已知橢圓的中心在坐標原點,焦點在x軸上,以其兩個焦點和短軸的兩個端點為頂點的
四邊形是一個面積為4的正方形,設(shè)P為該橢圓上的動點,C、D的坐標分別是,則PC·PD的最大值為  (     )
A   4        B       C    3     D   +2
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分18分,第(1)小題9分,第(2)小題9分)
設(shè)復數(shù)與復平面上點對應(yīng).
(1)設(shè)復數(shù)滿足條件(其中,常數(shù)),當為奇數(shù)時,動點的軌跡為;當為偶數(shù)時,動點的軌跡為,且兩條曲線都經(jīng)過點,求軌跡的方程;
(2)在(1)的條件下,軌跡上存在點,使點與點的最小距離不小于,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓為其左、右焦點,A為右頂點,l為左準線,過的直線與橢圓相交于P,Q兩點,且有

(1)求橢圓C的離心率e的最小值;
(2),求證:M,N兩點的縱坐標之積是定值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

20.(本小題滿分14分)

已知圓和橢圓的一個公共點為為橢圓的右焦點,直線與圓相切于點
(Ⅰ)求值和橢圓的方程;
(Ⅱ)圓上是否存在點,使為等腰三角形?若存在,求出點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知為橢圓的左右焦點,拋物線以為頂點,為焦點,設(shè)為橢圓與拋物線的一個交點,橢圓離心率為,且,求的值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的長軸長為           

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如下圖,橢圓中心在坐標原點,焦點在坐標軸上,A、B是頂點,F(xiàn)是左焦點;當BF⊥AB時,此類橢圓稱為 “黃金橢圓”,其離心率為。類比“黃金橢圓”可推算出“黃金雙曲線”的離心率e=         

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

10.已知分別是橢圓的上、下頂點和右焦點,直線與橢圓的右準線交于點,若直線軸,則該橢圓的離心率=    ▲   .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的兩個焦點和短軸兩個頂點是有一個內(nèi)角為的菱形的四個頂點,則橢圓的離心率為         

查看答案和解析>>

同步練習冊答案