函數(shù)+1在點(diǎn)(0,1)處的切線方程為________.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3+ax2+bx+c在(-∞,0)上是減函數(shù),在(0,1)上是增函數(shù),函數(shù)f(x)在R上有三個零點(diǎn).
(1)求b的值;
(2)若1是其中一個零點(diǎn),求f(2)的取值范圍;
(3)若a=1,g(x)=f′(x)+3x2+lnx,試問過點(diǎn)(2,5)可作多少條直線與曲線y=g(x)相切?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x
+alnx-2

(Ⅰ)若曲線y=f(x)在點(diǎn)P(1,f(1))處的切線與直線y=x+2垂直,求a的值;
(Ⅱ)若f(x)≥0在x∈[1,+∞)上恒成立,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年高考預(yù)測卷數(shù)學(xué)科(一)新課標(biāo) 題型:044

已知函數(shù)y=f(x)滿足:

(1)分別寫出x∈[0,1)時y=f(x)的解析式f1(x)和x∈[1,2)時y=f(x)的解析式f2(x);并猜想x∈[n,n+1),n≥-1,n∈Z時y=f(x)的解析式fn+1(x)(用x和n表示)(不必證明)

(2)當(dāng)(n≥-1,n∈Z)時,y=fn+1(x)x∈[n,n+1),n≥-1,n∈Z的圖象上有點(diǎn)列An+1(x,f(x))和點(diǎn)列Bn+1(n+1,f(n+1)),線段An+1Bn+2與線段Bn+1+An+2的交點(diǎn)Cn+1,求點(diǎn)Cn+1的坐標(biāo)(an+1(x),bn+1(x));

(3)在前面(1)(2)的基礎(chǔ)上,請你提出一個點(diǎn)列Cn+1(an+1(x),bn+1(x))的問題,并進(jìn)行研究,并寫下你研究的過程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:安徽省望江縣2012屆高三第一次月考數(shù)學(xué)理科試題 題型:044

函數(shù)f(x)=ex+2x2-3x.

(1)求證函數(shù)f(x)在區(qū)間[0,1]上存在唯一的極值點(diǎn),并用二分法求函數(shù)取得極值時相應(yīng)x的近似值(誤差不超過0.2);(參考數(shù)據(jù)e≈2.7,≈1.6,e0.3≈1.3)

(2)當(dāng)x≥時,若關(guān)于x的不等式f(x)≥x2+(a-3)x+1恒成立,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案