已知等差數(shù)列的前項(xiàng)和為,,,則數(shù)列的前100項(xiàng)和為                    (    )

A、      B、      C、     D、

 

【答案】

A

【解析】

試題分析:利用等差數(shù)列通項(xiàng)公式、性質(zhì)、前項(xiàng)和公式及裂項(xiàng)相消求和法求解

方法一

設(shè)等差數(shù)列的首項(xiàng)為,公差為.

所以,所以,所以

,所以數(shù)列的前100項(xiàng)的和為

方法二

設(shè)等差數(shù)列的首項(xiàng)為,公差為.  ,又

  下同方法一略

考點(diǎn):本小題主要考查了等差數(shù)列通項(xiàng)公式及性質(zhì)、前項(xiàng)和公式及裂項(xiàng)相消求和法,考查了方程思想以及運(yùn)算求解能力。

點(diǎn)評:解決此類問題的關(guān)鍵是掌握等差數(shù)列通項(xiàng)公式及性質(zhì)、前項(xiàng)和公式及裂項(xiàng)相消求和法,并能熟練應(yīng)用。方法一屬于通性通法,便于學(xué)生掌握。方法二屬于技巧型便于計算,但需要準(zhǔn)確掌握等差數(shù)列的常用性質(zhì),難度適中。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(07年江西卷文)已知等差數(shù)列的前項(xiàng)和為,若,則     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海市普陀區(qū)高三數(shù)學(xué)高考臨考自測練習(xí)卷 題型:單選題

(理)已知等差數(shù)列的公差是,是該數(shù)列的前項(xiàng)和.
(1)試用表示,其中、均為正整數(shù);
(2)利用(1)的結(jié)論求解:“已知,求”;
(3)若數(shù)列項(xiàng)的和分別為,試將問題(1)推廣,探究相應(yīng)的結(jié)論. 若能證明,則給出你的證明并求解以下給出的問題;若無法證明,則請利用你的研究結(jié)論和另一種方法計算以下給出的問題,從而對你猜想的可靠性作出自己的評價.問題:“已知等差數(shù)列的前項(xiàng)和,前項(xiàng)和,求數(shù)列的前2010項(xiàng)的和.”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省濟(jì)寧市高三11月月考理科數(shù)學(xué)試卷 題型:解答題

已知等差數(shù)列的前項(xiàng)和為

(1)求數(shù)列的通項(xiàng)公式與前項(xiàng)和;

(2)設(shè)求證:數(shù)列中任意不同的三項(xiàng)都不可能成為等比數(shù)列.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年寧夏高三第一次模擬考試文科數(shù)學(xué)試卷 題型:填空題

已知等差數(shù)列的前項(xiàng)和為,且滿足,則數(shù)列的公差是_________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆度廣東省山一高二期理科數(shù)學(xué)試卷 題型:解答題

已知等差數(shù)列的前項(xiàng)和為,且,

(1)求的通項(xiàng)公式;

(2)設(shè),求證:數(shù)列是等比數(shù)列,并求其前項(xiàng)和

 

查看答案和解析>>

同步練習(xí)冊答案