在復平面內(nèi),復數(shù)z1,z2對應的點分別是(11,-7),(1,-2),且
z1
z2
=x+yi(其中x,y∈R,i為虛數(shù)單位),則x+y的值為
 
考點:復數(shù)相等的充要條件
專題:數(shù)系的擴充和復數(shù)
分析:由已知得
z1
z2
=
11-7i
1-2i
=
(11-7i)(1+2i)
5
=5+3i=x+yi,由此能求出x+y=8.
解答: 解:∵在復平面內(nèi),復數(shù)z1,z2對應的點分別是(11,-7),(1,-2),
z1
z2
=x+yi(其中x,y∈R,i為虛數(shù)單位),
z1
z2
=
11-7i
1-2i
=
(11-7i)(1+2i)
5
=5+3i=x+yi,
∴x=5,y=3,x+y=8.
故答案為:8.
點評:本題考查函數(shù)值的求法,是基礎題,解題時要認真審題,注意復數(shù)性質的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知命題α:|x-1|≤2,命題β:
x-3
x+1
≤0,則命題α是命題β成立的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

2014年全國網(wǎng)球賽規(guī)定:比賽分四個階段,只有上一階段的勝者,才能繼續(xù)參加下一階段的比賽,否則就
被淘汰,選手每闖過一個階段,個人積10分,否則積0分.甲、乙兩個網(wǎng)球選手參加了此次比賽.已知甲每
個階段取勝的概率為
1
2
,乙每個階段取勝的概為
2
3
.甲、乙取勝相互獨立.
(1)求甲、乙兩人最后積分之和為20分的概率;
(2)設甲的最后積分為X,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}是公比為q的正項等比數(shù)列,a1=1,an+2=
an-an+1
2
(n∈N*).
(1)求{an}的通項公式;
(2)令bn=
1
an
+log
1
2
an+1
,求{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(2x+
π
6
)+
1
2
+m的圖象過點(
12
,0)
(1)求實數(shù)m的值及f(x)的周期及單調(diào)遞增區(qū)間;
(2)若x∈[0,
π
2
],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U={1,2,3,4,5,6},集合A={1,3,5},B={1,2},則(∁UA)∩B=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“m=-1”是“直線mx+(2m-1)y+1=0,和直線3x+my+9=0垂直”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是定義在R上的函數(shù),f(0)=2,對任意x∈R,f(x)+f′(x)>1,則不等式exf(x)>ex+1的解集為(  )
A、(0,+∞)
B、(-∞,0)
C、(-∞,-1)∪(1,+∞)
D、(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
5+2
3+2x-x2
x+1
+
3-x
的最大值為M,最小值為N,則
M
N
=(  )
A、
2
B、
9
2
10
C、
9
2
8
D、
5
2
+4
10

查看答案和解析>>

同步練習冊答案