【題目】已知是偶函數(shù),.
(1)求的值,并判斷函數(shù)在上的單調(diào)性,說明理由;
(2)設,若函數(shù)與的圖像有且僅有一個交點,求實數(shù)的取值范圍;
(3)定義在上的一個函數(shù),如果存在一個常數(shù),使得式子對一切大于1的自然數(shù)都成立,則稱函數(shù)為“上的函數(shù)”(其中,).試判斷函數(shù)是否為“上的函數(shù)”,若是,則求出的最小值;若不是,則說明理由.(注:).
【答案】(1),遞減;理由見解析;(2);(3)是,.
【解析】
(1)由偶函數(shù)的定義可得f(﹣x)=f(x),結(jié)合對數(shù)函數(shù)的運算性質(zhì),解方程可得所求值;函數(shù)h(x)=f(x)x=log4(4x+1)﹣x在R上遞減,運用單調(diào)性的定義和對數(shù)函數(shù)的單調(diào)性,即可證明;
(2)由題意可得log4(4x+1)x=log4(a2xa)有且只有一個實根,可化為2x+2﹣x=a2xa,即有a,化為a﹣1,運用換元法和對勾函數(shù)的單調(diào)性,即可得到所求范圍.
(3)利用求解即可
(1)f(x)=log4(4x+1)+kx是偶函數(shù),
可得f(﹣x)=f(x),即log4(4﹣x+1)﹣kx=log4(4x+1)+kx,
即有log42kx,可得log44﹣x=﹣x=2kx,
由x∈R,可得k;
又函數(shù)h(x)=f(x)x=log4(4 x+1)﹣x=在R上遞減,
理由:設x1<x2,則h(x1)﹣h(x2)=log4( )﹣log4()
=log4(4﹣x1+1)﹣log4(4﹣x2+1),
由x1<x2,可得﹣x1>﹣x2,可得log4(4﹣x1+1)>log4(4﹣x2+1),
則h(x1)>
(2)g(x)=log4(a2xa),若函數(shù)f(x)與g(x)的圖象有且僅有一個交點,
即為log4(4x+1)x=log4(a2xa)有且只有一個實根,
可化為2x+2﹣x=a2xa,
即有a,化為a﹣1,
可令t=12x(t>1),則2x,
則a﹣1,
由9t34在(1,)遞減,(,+∞)遞增,
可得9t34的最小值為234=﹣4,
當a﹣1=﹣4時,即a=﹣3滿足兩圖象只有一個交點;
當t=1時,9t34=0,可得a﹣1>0時,即a>1時,兩圖象只有一個交點,
綜上可得a的范圍是(1,+∞)∪{﹣3}.
(3)是函數(shù),理由如下:由題當任意的,有
因為單調(diào)遞增,則,故的最小值為
科目:高中數(shù)學 來源: 題型:
【題目】某工廠生產(chǎn)的產(chǎn)品的直徑均位于區(qū)間內(nèi)(單位: ).若生產(chǎn)一件產(chǎn)品的直徑位于區(qū)間內(nèi)該廠可獲利分別為10,30,20,10(單位:元),現(xiàn)從該廠生產(chǎn)的產(chǎn)品中隨機抽取200件測量它們的直徑,得到如圖所示的頻率分布直方圖.
(1)求的值,并估計該廠生產(chǎn)一件產(chǎn)品的平均利潤;
(2)現(xiàn)用分層抽樣法從直徑位于區(qū)間內(nèi)的產(chǎn)品中隨機抽取一個容量為5的樣本,從樣本中隨機抽取兩件產(chǎn)品進行檢測,求兩件產(chǎn)品中至多有一件產(chǎn)品的直徑位于區(qū)間內(nèi)的槪率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示在四棱錐中,下底面為正方形,平面平面,為以為斜邊的等腰直角三角形,,若點是線段上的中點.
(1)證明平面.
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知平面直角坐標系,直線過點,且傾斜角為,以為極點,軸的非負半軸為極軸建立極坐標系,圓的極坐標方程為.
(1)求直線的參數(shù)方程和圓的標準方程;
(2)設直線與圓交于、兩點,若,求直線的傾斜角的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), ,其中.
(1)當時,求函數(shù)的值域;
(2)若對任意,均有,求的取值范圍;
(3)當時,設,若的最小值為,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點P到直線y=﹣4的距離比點P到點A(0,1)的距離多3.
(1)求點P的軌跡方程;
(2)經(jīng)過點Q(0,2)的動直線l與點P的軌交于M,N兩點,是否存在定點R使得∠MRQ=∠NRQ?若存在,求出點R的坐標:若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一次田徑比賽中,35名運動員的成績(單位:分鐘)的莖葉圖如圖所示。
若將運動員按成績由好到差編為1—35號,再用系統(tǒng)抽樣方法從中抽取5人,則其中成績在區(qū)間上的運動員人數(shù)為
A.6B.5C.4D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com