命題p:“直線l上不同的兩點(diǎn)A,B到平面α的距離為1”,命題q:“l(fā)∥α”,則p是q的( 。l件.
分析:此題考查點(diǎn)到面的距離問(wèn)題,以及充分必要條件的判斷.
解答:解:命題p:“直線l上不同的兩點(diǎn)A,B到平面α的距離為1”
 那么l與平面α可能為相交,
∴p不是q的充分條件
命題q:“l(fā)∥α”,
那么直線l上的所有點(diǎn)到平面α的距離相等,但距離不一定為1
∴p不是q的必要條件
∴則p是q的既不充分也不必要條件.
故選D
點(diǎn)評(píng):判斷充要條件的方法是:
①若p⇒q為真命題且q⇒p為假命題,則命題p是命題q的充分不必要條件;
②若p⇒q為假命題且q⇒p為真命題,則命題p是命題q的必要不充分條件;
③若p⇒q為真命題且q⇒p為真命題,則命題p是命題q的充要條件;
④若p⇒q為假命題且q⇒p為假命題,則命題p是命題q的即不充分也不必要條件.
⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰(shuí)大誰(shuí)必要,誰(shuí)小誰(shuí)充分”的原則,判斷命題p與命題q的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),其焦距為2c,若
c
a
=
5
-1
2
(≈0.618),則稱橢圓C為“黃金橢圓”.
(1)求證:在黃金橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)中,a、b、c成等比數(shù)列.
(2)黃金橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦點(diǎn)為F2(c,0),P為橢圓C上的任意一點(diǎn).是否存在過(guò)點(diǎn)F2、P的直線l,使l與y軸的交點(diǎn)R滿足
RP
=-3
PF2
?若存在,求直線l的斜率k;若不存在,請(qǐng)說(shuō)明理由.
(3)在黃金橢圓中有真命題:已知黃金橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點(diǎn)分別是F1(-c,0)、F2(c,0),以A(-a,0)、B(a,0)、D(0,-b)、E(0,b)為頂點(diǎn)的菱形ADBE的內(nèi)切圓過(guò)焦點(diǎn)F1、F2.試寫(xiě)出“黃金雙曲線”的定義;對(duì)于上述命題,在黃金雙曲線中寫(xiě)出相關(guān)的真命題,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①若直線l∥平面α,l∥平面β,則α∥β;
②各側(cè)面都是正方形的棱柱一定是正棱柱;
③一個(gè)二面角的兩個(gè)半平面所在的平面分別垂直于另一個(gè)二面角的兩個(gè)半平面所在的平面,則這兩個(gè)二面角的平面角相等或互為補(bǔ)角;
④過(guò)空間任意一點(diǎn)P一定可以作一個(gè)和兩條異面直線(點(diǎn)P不再此兩條異面直線上)都平行的平面.
其中不正確的命題的個(gè)數(shù)有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,三條平行直線l1,l,l2把平面分成Ⅰ、Ⅱ、Ⅲ、Ⅳ四個(gè)區(qū)域(不含邊界),且直線l到l1,l2的距離相等.點(diǎn)O在直線l上,點(diǎn)A、B在直線
l1上,P為平面區(qū)域內(nèi)一點(diǎn),且
OP
=λ1
OA
+λ2
OB
(λ1,λ2∈R)
,給出下列四個(gè)命題:
(1)若λ1>1,λ2>1,則點(diǎn)P位于區(qū)域Ⅰ;
(2)若點(diǎn)P位于區(qū)域Ⅱ,則λ12>1;
(3)若點(diǎn)P位于區(qū)域Ⅲ,則-1<λ12<0;
(4)若點(diǎn)P位于區(qū)域IV,則λ12<-1;
則所有正確命題的序號(hào)為
(1)(3)(4)
(1)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•楊浦區(qū)二模)(理)設(shè)斜率為k1的直線L交橢圓C:
x2
2
+y2=1
于A、B兩點(diǎn),點(diǎn)M為弦AB的中點(diǎn),直線OM的斜率為k2(其中O為坐標(biāo)原點(diǎn),假設(shè)k1、k2都存在).
(1)求k1?k2的值.
(2)把上述橢圓C一般化為
x2
a2
+
y2
b2
=1

(a>b>0),其它條件不變,試猜想k1與k2關(guān)系(不需要證明).請(qǐng)你給出在雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)中相類似的結(jié)論,并證明你的結(jié)論.
(3)分析(2)中的探究結(jié)果,并作出進(jìn)一步概括,使上述結(jié)果都是你所概括命題的特例.
如果概括后的命題中的直線L過(guò)原點(diǎn),P為概括后命題中曲線上一動(dòng)點(diǎn),借助直線L及動(dòng)點(diǎn)P,請(qǐng)你提出一個(gè)有意義的數(shù)學(xué)問(wèn)題,并予以解決.

查看答案和解析>>

同步練習(xí)冊(cè)答案