在120°的二面角內(nèi)放一個(gè)半徑為5的球,切面?zhèn)半平面于A、B兩點(diǎn),則這兩個(gè)切點(diǎn)在球面上的球面距離是______________.

 

解析:本題考查考生空間想象能力以及分析解決問題的能力.如圖:設(shè)球心為O,A、B是球與平面的兩個(gè)切點(diǎn),平面OAB交二面角的棱于點(diǎn)C,由于OA、OB分別垂直于兩平面,由垂面法易知∠ACB即為二面角的平面角,且由OA⊥AC,OB⊥BC,即O、A、B、C四點(diǎn)共圓,故∠AOB+∠ACB=180°,故∠AOB=60°,A、B之間的球面距離

d=×5=


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在120°的二面角內(nèi),放一個(gè)半徑為10cm的球切兩半平面于A,B兩點(diǎn),那么這兩切點(diǎn)在球面上的最短距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•和平區(qū)三模)在120°的二面角內(nèi)放一個(gè)半徑為6的球,與兩個(gè)半平面各有且僅有一個(gè)公共點(diǎn),則這兩點(diǎn)間的球面距離是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•普陀區(qū)一模)在120°的二面角內(nèi)放一個(gè)半徑為6的球,使球與兩個(gè)半平面各只有一個(gè)公共點(diǎn)(其過球心且垂直于二面角的棱的直截面如圖所示),則這兩個(gè)公共點(diǎn)AB之間的球面距離為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①有兩個(gè)側(cè)面是矩形的四棱柱是直四棱柱;
②若f(x)是單調(diào)函數(shù),則f(x)與它的反函數(shù)f -1(x)具有相同的單調(diào)性;
③若兩平面垂直相交于直線m,則過一個(gè)平面內(nèi)一點(diǎn)垂直于m的直線就垂直于另一平面;
④在120°的二面角內(nèi)放一個(gè)半徑為6的球,使它與兩個(gè)半平面各有且僅有一個(gè)公共點(diǎn),則球心到這個(gè)二面角的棱的距離是2
3
.其中,不正確命題的序號(hào)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在120°的二面角內(nèi)放置一個(gè)半徑為5的小球,它與二面角的兩個(gè)面相切于A、B兩點(diǎn),則這兩個(gè)點(diǎn)在球面上的距離為
3
3

查看答案和解析>>

同步練習(xí)冊(cè)答案