已知是雙曲線的兩個頂點,點是雙曲線上異于的一點,連接為坐標原點)交橢圓于點,如果設(shè)直線的斜率分別為,且,假設(shè),則的值為(  )
A.1B.C.2D.4
C

試題分析:設(shè),則,又因為點在雙曲線上,,可得,  又因為點在橢圓上,,可得,.三點共線,,即,,又 是方程的兩根, ,故選C.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓)右頂點與右焦點的距離為,短軸長為.
(I)求橢圓的方程;  
(II)過左焦點的直線與橢圓分別交于、兩點,若三角形的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:  (a>b>0)的兩個焦點和短軸的兩個端點都在圓上.
(I)求橢圓C的方程;
(II)若斜率為k的直線過點M(2,0),且與橢圓C相交于A, B兩點.試探討k為何值時,三角形OAB為直角三角形.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:的離心率等于,點P在橢圓上。
(1)求橢圓的方程;
(2)設(shè)橢圓的左右頂點分別為,過點的動直線與橢圓相交于兩點,是否存在定直線,使得的交點總在直線上?若存在,求出一個滿足條件的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知橢圓C: 的左、右焦點分別為,離心率為,點A是橢圓上任一點,的周長為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點任作一動直線l交橢圓C于兩點,記,若在線段上取一點R,使得,則當直線l轉(zhuǎn)動時,點R在某一定直線上運動,求該定直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率為,左焦點為
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線與曲線交于不同的、兩點,且線段的中點在圓 上,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

(5分)從橢圓上一點P向x軸作垂線,垂足恰為左焦點F1,A是橢圓與x軸正半軸的交點,B是橢圓與y軸正半軸的交點,且AB∥OP(O是坐標原點),則該橢圓的離心率是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的左、右焦點分別為、,若橢圓上恰好有6個不同的點,使得為等腰三角形,則橢圓的離心率的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在橢圓中,分別是其左右焦點,若橢圓上存在一點P使得,則該橢圓離心率的取值范圍是(    )
A.B.C.D.

查看答案和解析>>

同步練習冊答案