已知點是常數(shù)),且動點軸的距離比到點的距離小.
(1)求動點的軌跡的方程;
(2)(i)已知點,若曲線上存在不同兩點、滿足,求實數(shù)的取值范圍;
(ii)當時,拋物線上是否存在異于、的點,使得經(jīng)過、、三點的圓和拋物線在點處有相同的切線,若存在,求出點的坐標,若不存在,請說明理由.
(1)動點的軌跡的方程為;(2)(i)實數(shù)的取值范圍是
(ii)詳見解析.

試題分析:(1)首先由題意得到動點到直線和動點到點的距離相等,從而得到動點的軌跡是以點為焦點,以直線為準線的拋物線,從而求出軌跡的方程;(2)(i)先由得到點為線段的中點,并設(shè)點,從而得到,并設(shè)直線的方程為,與拋物線的方程聯(lián)立,結(jié)合與韋達定理在中消去,從而求解參數(shù)的取值范圍;(ii)先假設(shè)點存在,先利用(i)中的條件求出點、兩點的坐標,并設(shè)點的坐標為,設(shè)圓的圓心坐標為,利用、三點為圓上的點,得到,利用兩點間的距離公式得到方程組,在方程組得到的關(guān)系式,然后利用導數(shù)求出拋物線在點的切線的斜率,利用切線與圓的半徑垂直,得到兩直線斜率之間的關(guān)系,進而求出的值,從而求出點的坐標.
試題解析:(1);
(2)(i)設(shè),兩點的坐標為,且,
,可得的中點,即
顯然直線軸不垂直,設(shè)直線的方程為,即
代入中,得.      2分 
 ∴. 故的取值范圍為
(ii)當時,由(i)求得,的坐標分別為
假設(shè)拋物線上存在點),使得經(jīng)過、、三點的圓和拋物線在點處有相同的切線.設(shè)圓的圓心坐標為,
 ∴
    解得
∵拋物線在點處切線的斜率為,而,且該切線與垂直,
.即.  
,代入上式,得
.∵,∴
故滿足題設(shè)的點存在,其坐標為
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓與雙曲線有公共的焦點,過橢圓E的右頂點作任意直線l,設(shè)直線l交拋物線于M、N兩點,且
(1)求橢圓E的方程;
(2)設(shè)P是橢圓E上第一象限內(nèi)的點,點P關(guān)于原點O的對稱點為A、關(guān)于x軸的對稱點為Q,線段PQ與x軸相交于點C,點D為CQ的中點,若直線AD與橢圓E的另一個交點為B,試判斷直線PA,PB是否相互垂直?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的方程為,雙曲線的左、右焦點分別為的左、右頂點,而的左、右頂點分別是的左、右焦點。
(1)求雙曲線的方程;
(2)若直線與橢圓及雙曲線都恒有兩個不同的交點,且L與的兩個焦點A和B滿足(其中O為原點),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,已知圓為圓上一動點,點是線段的垂直平分線與直線的交點.

(1)求點的軌跡曲線的方程;
(2)設(shè)點是曲線上任意一點,寫出曲線在點處的切線的方程;(不要求證明)
(3)直線過切點與直線垂直,點關(guān)于直線的對稱點為,證明:直線恒過一定點,并求定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓 的左、右焦點分別是,是橢圓右準線上的一點,線段的垂直平分線過點.又直線按向量平移后的直線是,直線按向量平移后的直線是 (其中)。
(1) 求橢圓的離心率的取值范圍。
(2)當離心率最小且時,求橢圓的方程。
(3)若直線相交于(2)中所求得的橢圓內(nèi)的一點,且與這個橢圓交于、兩點,與這個橢圓交于、兩點。求四邊形ABCD面積的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知分別是橢圓的左、右焦點,右焦點到上頂點的距離為2,若.
(Ⅰ)求此橢圓的方程;
(Ⅱ)點是橢圓的右頂點,直線與橢圓交于、兩點(在第一象限內(nèi)),又、是此橢圓上兩點,并且滿足,求證:向量共線.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線、是雙曲線的左右頂點,是雙曲線上除兩頂點外的一點,直線與直線的斜率之積是,
求雙曲線的離心率;
若該雙曲線的焦點到漸近線的距離是,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)橢圓C:過點(0,4),離心率為
(Ⅰ)求C的方程;(Ⅱ)求過點(3,0)且斜率為的直線被C所截線段的長度.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,是雙曲線與橢圓的公共焦點,點A是在第一象限的公共點.若,則的離心率是(      )
A.B.C.D.

查看答案和解析>>

同步練習冊答案