【題目】在多面體ABCDEF中,底面ABCD是梯形,四邊形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=。
(1)求證:平面EBC⊥平面EBD;
(2)設(shè)M為線段EC上一點(diǎn),且3EM=EC,試問在線段BC上是否存在一點(diǎn)T,使得MT∥平面BDE,若存在,試指出點(diǎn)T的位置;若不存在,請(qǐng)說明理由.
【答案】見解析
【解析】解:(1)證明:因?yàn)锳D=1,CD=2,AC=,
所以AD2+CD2=AC2,
所以△ADC為直角三角形,且AD⊥DC.
同理,因?yàn)镋D=1,CD=2,EC=,
所以ED2+CD2=EC2,
所以△EDC為直角三角形,且ED⊥DC.
又四邊形ADEF是正方形,所以AD⊥DE,
又AD∩DC=D,所以ED⊥平面ABCD.
又BC平面ABCD,所以ED⊥BC.
在梯形ABCD中,過點(diǎn)B作BH⊥CD于點(diǎn)H,
故四邊形ABHD是正方形,所以∠ADB=45°,BD=。
在Rt△BCH中,BH=CH=1,所以BC=,
故BD2+BC2=DC2,所以BC⊥BD.
因?yàn)锽D∩ED=D,BD平面EBD,ED平面EBD,
所以BC⊥平面EBD,
又BC平面EBC,所以平面EBC⊥平面EBD.
(2)在線段BC上存在一點(diǎn)T,使得MT∥平面BDE,此時(shí)3BT=BC.
連接MT,在△EBC中,因?yàn)?/span>==,所以MT∥EB.
又MT平面BDE,EB平面BDE,
所以MT∥平面BDE。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差數(shù)列,bn,an+1,bn+1成等比數(shù)列{n∈N+}.
求a2,a3,a4及b2,b3,b4,由此猜測(cè){an},{bn}的通項(xiàng)公式,并證明你的結(jié)論;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=x+有如下性質(zhì):如果常數(shù)t>0,那么該函數(shù)在(0, ]上是減函數(shù),在[,+∞)上是增函數(shù).
(1)已知f(x)=,x∈[0,1],利用上述性質(zhì),求函數(shù)f(x)的單調(diào)區(qū)間和值域;
(2)對(duì)于(1)中的函數(shù)f(x)和函數(shù)g(x)=-x-2a,若對(duì)任意x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正整數(shù), , 是等腰三角形的三邊長(zhǎng),并且,這樣的三角形有( )個(gè).
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),證明: 在定義域上為減函數(shù);
(Ⅱ)若.討論函數(shù)的零點(diǎn)情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù), .
(1)若,寫出函數(shù)的單調(diào)增區(qū)間和減區(qū)間;
(2)若,求函數(shù)的最大值和最小值;
(3)若函數(shù)在上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把1、2、3、4、5這五個(gè)數(shù)字組成無重復(fù)數(shù)字的五位數(shù),并把它們由小大到的順序排成一個(gè)數(shù)列.
(Ⅰ)求是這個(gè)數(shù)列的第幾項(xiàng);
(Ⅱ)求這個(gè)數(shù)列的第96項(xiàng);
(Ⅲ)求這個(gè)數(shù)列的所有項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求曲線在點(diǎn)處的切線方程;
(2)若且,.
(i)求實(shí)數(shù)的最大值;
(ii)證明不等式:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com