【題目】“開(kāi)門大吉”是某電視臺(tái)推出的游戲節(jié)目.選手面對(duì)1~8號(hào)8扇大門,依次按響門上的門鈴,門鈴會(huì)播放一段音樂(lè)(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確回答出這首歌的名字,方可獲得該扇門對(duì)應(yīng)的家庭夢(mèng)想基金.在一次場(chǎng)外調(diào)查中,發(fā)現(xiàn)參賽選手多數(shù)分為兩個(gè)年齡段:20~30;30~40(單位:歲),其猜對(duì)歌曲名稱與否的人數(shù)如圖所示.
(1)寫出2×2列聯(lián)表;判斷是否有90%的把握認(rèn)為猜對(duì)歌曲名稱與否和年齡有關(guān);說(shuō)明你的理由;(下面的臨界值表供參考) (參考公式:K2= ,其中n=a+b+c+d)
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
(2)現(xiàn)計(jì)劃在這次場(chǎng)外調(diào)查中按年齡段選取6名選手,并抽取3名幸運(yùn)選手,求3名幸運(yùn)選手中在20~30歲之間的人數(shù)的分布列和數(shù)學(xué)期望.
【答案】
(1)解:
年齡/正誤 | 正確 | 錯(cuò)誤 | 合計(jì) |
20~30 | 10 | 30 | 40 |
30~40 | 10 | 70 | 80 |
合計(jì) | 20 | 100 | 120 |
K2= =3>2.706
∴有90%的把握認(rèn)為猜對(duì)歌曲名稱與否和年齡有關(guān)
(2)解:設(shè)3名選手中在20~30歲之間的人數(shù)為ξ,可能取值為0,1,2,…(5分)
20~30歲之間的人數(shù)是2人
P(ξ=0)= = ,P(ξ=1)= = ,P(ξ=2)= =
ξ | 0 | 1 | 2 |
P |
Eξ=0× +1× +2× =1
【解析】(1)根據(jù)所給的二維條形圖得到列聯(lián)表,利用公式求出k2=3>2.706,即可得出結(jié)論;(2)確定變量的取值,求出相應(yīng)的概率,即可求3名幸運(yùn)選手中在20~30歲之間的人數(shù)的分布列和數(shù)學(xué)期望.
【考點(diǎn)精析】關(guān)于本題考查的頻率分布直方圖,需要了解頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過(guò)作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)是直線上的動(dòng)點(diǎn),定點(diǎn) 點(diǎn)為的中點(diǎn),動(dòng)點(diǎn)滿足.
(1)求點(diǎn)的軌跡的方程
(2)過(guò)點(diǎn)的直線交軌跡于兩點(diǎn),為上任意一點(diǎn),直線交于兩點(diǎn),以為直徑的圓是否過(guò)軸上的定點(diǎn)? 若過(guò)定點(diǎn),求出定點(diǎn)的坐標(biāo);若不過(guò)定點(diǎn),說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D為線段AC的中點(diǎn),E為線段PC上一點(diǎn).
(1)求證:PA⊥BD;
(2)求證:平面BDE⊥平面PAC;
(3)當(dāng)PA∥平面BDE時(shí),求三棱錐E-BCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= sin2x+ sin2x.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若f( )= ,△ABC的面積為3 ,求a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某服務(wù)電話,打進(jìn)的電話響第1聲時(shí)被接的概率是0.1;響第2聲時(shí)被接的概率是0.2;響第3聲時(shí)被接的概率是0.3;響第4聲時(shí)被接的概率是0.35.
(1)打進(jìn)的電話在響5聲之前被接的概率是多少?
(2)打進(jìn)的電話響4聲而不被接的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函f(x)=ax2﹣ex(a∈R). (Ⅰ)a=1時(shí),試判斷f(x)的單調(diào)性并給予證明;
(Ⅱ)若f(x)有兩個(gè)極值點(diǎn)x1 , x2(x1<x2).
(i) 求實(shí)數(shù)a的取值范圍;
(ii)證明:﹣ . (注:e是自然對(duì)數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班從6名干部中(其中男生4人,女生2人)選3人參加學(xué)校的義務(wù)勞動(dòng).
(1)設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列及Eξ;
(2)求男生甲或女生乙被選中的概率;
(3)在男生甲被選中的情況下,求女生乙也被選中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓心在x軸正半軸上的圓C與直線相切,與y軸交于M,N兩點(diǎn),且.
Ⅰ求圓C的標(biāo)準(zhǔn)方程;
Ⅱ過(guò)點(diǎn)的直線l與圓C交于不同的兩點(diǎn)D,E,若時(shí),求直線l的方程;
Ⅲ已知Q是圓C上任意一點(diǎn),問(wèn):在x軸上是否存在兩定點(diǎn)A,B,使得?若存在,求出A,B兩點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com