解關(guān)于x的不等式ax2-(a+1)x+1<0.
分析:當(dāng)a=0時(shí),得到一個(gè)一元一次不等式,求出不等式的解集即為原不等式的解集;當(dāng)a≠0時(shí),把原不等式的左邊分解因式,然后分4種情況考慮:a小于0,a大于0小于1,a大于1和a等于1時(shí),分別利用求不等式解集的方法求出原不等式的解集即可.
解答:解:當(dāng)a=0時(shí),不等式的解為x>1;
當(dāng)a≠0時(shí),分解因式a(x-
1
a
)(x-1)<0
當(dāng)a<0時(shí),原不等式等價(jià)于(x-
1
a
)(x-1)>0,
不等式的解為x>1或x<
1
a
;
當(dāng)0<a<1時(shí),1<
1
a
,不等式的解為1<x<
1
a
;
當(dāng)a>1時(shí),
1
a
<1,不等式的解為
1
a
<x<1;
當(dāng)a=1時(shí),不等式的解為∅.
點(diǎn)評(píng):此題考查了一元二次不等式的解法,考查了分類討論的數(shù)學(xué)思想,是一道綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式ax-
3
x
+1
1
a
(其中a>0且a≠1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式ax+5<a4x-1(a>0,且a≠1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知loga(a2+1)<0
(1)比較loga(a2+1)與loga2a的大小.
(2)解關(guān)于x的不等式ax+1-
3
x
1
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式|ax-1|>a+1(a>-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式ax-
2x
≥2-a

查看答案和解析>>

同步練習(xí)冊(cè)答案