設(shè)計(jì)一個(gè)算法,求f(x)=x6+x5+x4+x3+x2+x+1,當(dāng)x=2時(shí)的函數(shù)值,要求畫出程序框圖,并寫出程序.
考點(diǎn):設(shè)計(jì)程序框圖解決實(shí)際問題
專題:圖表型,算法和程序框圖
分析:用秦九韶算法計(jì)算多項(xiàng)式可得f(x)=x6+x5+x4+x3+x2+x+1=((((((x+1)x+1)x+1)x+1)x+1)x+1,當(dāng)x=2時(shí)由循環(huán)結(jié)構(gòu)畫出程序框圖,再由框圖寫出程序即可.
解答: 解:用秦九韶算法計(jì)算多項(xiàng)式f(x)=x6+x5+x4+x3+x2+x+1=((((((x+1)x+1)x+1)x+1)x+1)x+1,依題意
程序框圖如下:

程序如下:
S=0
i=0
WHILE i≤6
  S=S+2^i
  i=i+1
WEND
PRINT S
END
點(diǎn)評(píng):本題主要考查了程序框圖和算法,熟練掌握秦九韶算法是解題的關(guān)鍵,屬于基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年江西省贛州市北校高二1月月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知直線平行,則它們之間的距離是( )

A.1 B.2 C. D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,且前18項(xiàng)的積a1•a2…a18=227
(1)若a5+a14=9,求公比q
(2)若公比q=2,求a3•a6•a9•a12•a15•a18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:函數(shù)f(x)=2x-
2-x
x+1
在(0,1)內(nèi)有且只有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3-bx,(b∈R)在區(qū)間(1,2)上有零點(diǎn),則b的取值范圍是(  )
A、(4,+∞)
B、(1,4)
C、(-4,-1)
D、(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,橢圓
x2
a2
+
y2
b2
=1的右焦點(diǎn)為F(c,0)(a>b>c>0),短軸的一個(gè)端點(diǎn)為P,已知△POF的面積為
3
2
,且O到直線PF的距離為
3
2

(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)F且斜率不為0的直線l與橢圓交于A,B兩點(diǎn),若直線OA,OB與直線x=4分別交于M,N兩點(diǎn),線段MN的中點(diǎn)為R,線段AB的中點(diǎn)為Q,證明:直線RQ過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的各項(xiàng)均為正數(shù),公比為q,前n項(xiàng)和為Sn,若對(duì)任意n∈N+,有S2n<3Sn,則q的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過原點(diǎn)O引拋物線y=x2+ax+4a2的切線,當(dāng)a變化時(shí),兩個(gè)切點(diǎn)分別在拋物線(  )上.
A、y=
1
2
x2,y=
3
2
x2
B、y=
3
2
x2,y=
5
2
x2
C、y=x2,y=3x2
D、y=3x2,y=5x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

利用誘導(dǎo)公式求下列三角形數(shù)值:
(1)sin(-810°);
(2)cos
11π
2
;
(3)sin120°;
(4)cos(-
3
);
(5)tan150°;
(6)sin
25π
6
;
(7)cos300°;
(8)sin(-
13π
4

查看答案和解析>>

同步練習(xí)冊(cè)答案