如圖,設(shè)橢圓的左、右焦點分別為,點在橢圓上,,,的面積為.
(1)求該橢圓的標準方程;
(2)設(shè)圓心在軸上的圓與橢圓在軸的上方有兩個交點,且圓在這兩個交點處的兩條切線相互垂直并分別過不同的焦點,求圓的半徑..
(1);(2)

試題分析:(1)由題設(shè)知其中
,結(jié)合條件的面積為,可求的值,再利用橢圓的定義和勾股定理即可求得的值,從而確定橢圓的標準方程;
(2)設(shè)圓心在軸上的圓與橢圓在軸的上方有兩個交點為由圓的對稱性可知
,利用在圓上及確定交點的坐標,進而得到圓的方程.
解:(1)設(shè),其中

從而.
從而,由,因此.
所以,故
因此,所求橢圓的標準方程為:

(2)如答(21)圖,設(shè)圓心在軸上的圓與橢圓相交,是兩個交點,,,是圓的切線,且由圓和橢圓的對稱性,易知
,
由(1)知,所以,再由,由橢圓方程得,即,解得.
時,重合,此時題設(shè)要求的圓不存在.
時,過分別與,垂直的直線的交點即為圓心.
,是圓的切線,且,知,又故圓的半徑
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,已知拋物線,在此拋物線上一點到焦點的距離是3.
(1)求此拋物線的方程;
(2)拋物線的準線與軸交于點,過點斜率為的直線與拋物線交于兩點.是否存在這樣的,使得拋物線上總存在點滿足,若存在,求的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若拋物線y2=2px(p>0)的焦點與橢圓
x2
6
+
y2
2
=1
的右焦點重合,則p=______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:)的焦距為4,其短軸的兩個端點與長軸的一個端點構(gòu)成正三角形.
(1)求橢圓C的標準方程;
(2)設(shè)F為橢圓C的左焦點,T為直線上任意一點,過F作TF的垂線交橢圓C于點P,Q.
(i)證明:OT平分線段PQ(其中O為坐標原點);
(ii)當最小時,求點T的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)為拋物線的焦點,過且傾斜角為的直線交,兩點,則 ( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線L:與橢圓E: 相交于A,B兩點,該橢圓上存在點P,使得
△ PAB的面積等于3,則這樣的點P共有(   )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線的焦點到準線的距離為.過點
作直線交拋物線兩點(在第一象限內(nèi)).
(1)若與焦點重合,且.求直線的方程;
(2)設(shè)關(guān)于軸的對稱點為.直線軸于. 且.求點到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖為橢圓C:的左、右焦點,D,E是橢圓的兩個頂點,橢圓的離心率,的面積為.若點在橢圓C上,則點稱為點M的一個“橢圓”,直線與橢圓交于A,B兩點,A,B兩點的“橢圓”分別為P,Q.

(1)求橢圓C的標準方程;
(2)問是否存在過左焦點的直線,使得以PQ為直徑的圓經(jīng)過坐標原點?若存在,求出該直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若拋物線的焦點是雙曲線的一個焦點,則正數(shù)等于(    )
A.B.C.D.

查看答案和解析>>

同步練習冊答案