【題目】某球迷為了解兩支球隊的攻擊能力,從本賽季常規(guī)賽中隨機調(diào)查了20場與這兩支球隊有關(guān)的比賽.兩隊所得分數(shù)分別如下:

球隊:122 110 105 105 109 101 107 129 115 100

114 118 118 104 93 120 96 102 105 83

球隊:114 114 110 108 103 117 93 124 75 106

91 81 107 112 107 101 106 120 107 79

(1)根據(jù)兩組數(shù)據(jù)完成兩隊所得分數(shù)的莖葉圖,并通過莖葉圖比較兩支球隊所得分數(shù)的平均值及分散程度(不要求計算出具體值,得出結(jié)論即可);

(2)根據(jù)球隊所得分數(shù),將球隊的攻擊能力從低到高分為三個等級:

球隊所得分數(shù)

低于100分

100分到119分

不低于120分

攻擊能力等級

較弱

較強

很強

記事件球隊的攻擊能力等級高于球隊的攻擊能力等級”.假設(shè)兩支球隊的攻擊能力相互獨立. 根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,求的概率.

【答案】(1)莖葉圖見解析,,A球隊所得分數(shù)的平均值高于B球隊所得分數(shù)的平均值;

A球隊所得分數(shù)比較集中,B球隊所得分數(shù)比較分散.

(2)0.31.

【解析】分析:(1)通過莖葉圖可以看出,球隊所得分數(shù)的平均值高于球隊所得分數(shù)的平均值;球隊所得分數(shù)比較集中,球隊所得分數(shù)比較分散;(2)由古典概型概率公式,利用互斥事件概率公式,獨立事件的概率公式可求得事件的概率.

詳解(1)兩隊所得分數(shù)的莖葉圖如下

A球隊

B球隊

7

5

9

3

8

1

3

6

9

3

1

5

2

4

0

7

1

9

5

5

10

8

3

6

7

7

1

6

7

8

8

4

5

0

11

4

4

0

7

2

0

9

2

12

4

0

通過莖葉圖可以看出,A球隊所得分數(shù)的平均值高于B球隊所得分數(shù)的平均值;

A球隊所得分數(shù)比較集中,B球隊所得分數(shù)比較分散.

(2)記CA1表示事件:“A球隊攻擊能力等級為較強”,

CA2表示事件:“A球隊攻擊能力等級為很強”;

CB1表示事件:“B球隊攻擊能力等級為較弱”,

CB2表示事件:“B球隊攻擊能力等級為較弱或較強”,

則CA1與CB1獨立,CA2與CB2獨立,CA1與CA2互斥,C=(CA1CB1)∪(CA2CB2).

P(C)=P(CA1CB1)+ P(CA2CB2)=P(CA1)P(CB1)+P(CA2)P(CB2).

由所給數(shù)據(jù)得CA1,CA2,CB1,CB2發(fā)生的頻率分別為,,,,故

P(CA1)=,P(CA2)=,P(CB1)=,P(CB2)=

P(C)=×/span>×=0.31.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面是直角梯形,,,,側(cè)面是等腰直角三角形,,平面平面,點分別是棱上的點,平面平面

(Ⅰ)確定點的位置,并說明理由;

(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩臺機床同時生產(chǎn)一種零件,其質(zhì)量按測試指標劃分:指標大于或等于100為優(yōu)品,大于等于90且小于100為合格品,小于90為次品,現(xiàn)隨機抽取這兩臺機床生產(chǎn)的零件各100件進行檢測,檢測結(jié)果統(tǒng)計如下:

測試指標

[8590

[90,95

[95,100

[100105

[105,110

甲機床

8

12

40

32

8

乙機床

7

18

40

29

6

1)試分別估計甲機床、乙機床生產(chǎn)的零件為優(yōu)品的概率;

2)甲機床生產(chǎn)1件零件,若是優(yōu)品可盈利160元,合格品可盈利100元,次品則虧損20元,假設(shè)甲機床某天生產(chǎn)50件零件,請估計甲機床該天的利潤(單位:元);

3)從甲、乙機床生產(chǎn)的零件指標在[90,95)內(nèi)的零件中,采用分層抽樣的方法抽取5件,從這5件中任意抽取2件進行質(zhì)量分析,求這2件都是乙機床生產(chǎn)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱柱,底面,底面是梯形,AB//DC,,

(1).求證:平面平面;

(2)求二面角的平面角的正弦值

(3).在線段上是否存在一點,使AP//平面.若存在,請確定點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出如下四個命題:①若“”為假命題,則均為假命題;②命題“若,則”的否命題為“若,則”; ③“,則”的否定是“,則”;④在中,“”是“”的充要條件.其中正確的命題的個數(shù)是( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務(wù)情況,隨機訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為

1)求頻率分布直方圖中的值;

2)估計該企業(yè)的職工對該部門評分不低于80的概率;

3)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若曲線在點處的切線與直線平行,求的值;

(2)討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)),且直線與曲線交于兩點,以直角坐標系的原點為極點,以軸的正半軸為極軸建立極坐標系.

(1)求曲線的極坐標方程;

(2) 已知點的極坐標為,求的值

查看答案和解析>>

同步練習冊答案