【題目】設(shè)拋物線C:x2=2py(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,A為C上一點(diǎn),已知以F為圓心,F(xiàn)A為半徑的圓F交l于B,D兩點(diǎn).
(1)若p=2且∠BFD=90°時(shí),求圓F的方程;
(2)若A,B,F(xiàn)三點(diǎn)在同一直線m上,設(shè)直線m與拋物線C的另一個(gè)交點(diǎn)為E,在y軸上求一點(diǎn)G,使得∠OGE=∠OGA.
【答案】
(1)解:由已知得F(0,1),△BFD為等腰直角三角形,|BD|=4,
⊙F的半徑|FB|=2 ,
∴⊙F的方程是x2+(y﹣1)2=8;
(2)解:∵A,B,F(xiàn)三點(diǎn)在同一直線m上,
∴AB是⊙F的直徑,∠ADB=90°,
由拋物線的定義得|AD|=|FA|= |AB|,
∴∠ABD=30°,m的斜率是 或﹣ ,
①當(dāng)m的斜率是 時(shí),直線m的方程是:y= x+ ,
代入x2=2py,x2﹣ px﹣p2=0,(△>0),
解得:x1= p,x2=﹣ p,
不妨記A( p, p),E(﹣ p, ),并設(shè)G(0,y0),
∵∠OGE=∠OGA,∴KGE+KGA=0,
即 + =0,解得:y0=﹣ ,
②當(dāng)m的斜率為﹣ 時(shí),由圖象的對(duì)稱性可知G(0,﹣ ),
綜上,點(diǎn)G的坐標(biāo)是(0,﹣ ).
【解析】(1)求出圓的半徑,從而求出圓的方程;(2)由拋物線的定義得|AD|=|FA|= |AB|,從而求出m,代入拋物線進(jìn)而求出G的坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績(jī)和物理成績(jī)之間的關(guān)系,隨機(jī)抽取高二年級(jí)20名學(xué)生某次考試成績(jī)(百分制)如表所示:
序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
數(shù)學(xué)成績(jī) | 95 | 75 | 80 | 94 | 92 | 65 | 67 | 84 | 98 | 71 | 67 | 93 | 64 | 78 | 77 | 90 | 57 | 83 | 72 | 83 |
物理成績(jī) | 90 | 63 | 72 | 87 | 91 | 71 | 58 | 82 | 93 | 81 | 77 | 82 | 48 | 85 | 69 | 91 | 61 | 84 | 78 | 86 |
若數(shù)學(xué)成績(jī)90分(含90分)以上為優(yōu)秀,物理成績(jī)85(含85分)以上為優(yōu)秀.有多少把握認(rèn)為學(xué)生的數(shù)學(xué)成績(jī)與物理成績(jī)之間有關(guān)系( )
A.99.5%
B.99.9%
C.97.5%
D.95%
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中, 平面,四邊形為正方形,且, 為線段的中點(diǎn).
(Ⅰ)求證: 平面;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,f (x)=sin(2x﹣A) (x∈R),函數(shù)f(x)的圖象關(guān)于點(diǎn)( ,0)對(duì)稱.
(1)當(dāng)x∈(0, )時(shí),求f (x)的值域;
(2)若a=7且sinB+sinC= ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高二年級(jí)有甲、乙、丙三個(gè)班參加社會(huì)實(shí)踐活動(dòng),高二年級(jí)老師要分到各個(gè)班級(jí)帶隊(duì),其中男女老師各一半,每次任選兩個(gè)老師,將其中一個(gè)老師分到甲班,如果這個(gè)老師是男老師,就將另一個(gè)老師分到乙班,否則就分到丙班,重復(fù)上述過程,直到所有老師都分到班級(jí),則
A. 乙班女老師不多于丙班女老師 B. 乙班男老師不多于丙班男老師
C. 乙班男老師與丙班女老師一樣多 D. 乙班女老師與丙班男老師一樣多
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)當(dāng)a=﹣2時(shí),求不等式f(x)<g(x)的解集;
(2)設(shè)a>﹣1,且當(dāng) 時(shí),f(x)≤g(x),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a為實(shí)數(shù),函數(shù)f(x)=+a+a.
(1)設(shè)t=,求t的取值范圖;
(2)把f(x)表示為t的函數(shù)h(t);
(3)設(shè)f (x)的最大值為M(a),最小值為m(a),記g(a)=M(a)-m(a)求g(a)的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司采用招考方式引進(jìn)人才,規(guī)定必須在,三個(gè)測(cè)試點(diǎn)中任意選取兩個(gè)進(jìn)行測(cè)試,若在這兩個(gè)測(cè)試點(diǎn)都測(cè)試合格,則可參加面試,否則不被錄用,已知考生在每測(cè)試個(gè)點(diǎn)測(cè)試結(jié)果互不影響,若考生小李和小王一起前來參加招考,小李在測(cè)試點(diǎn)測(cè)試合格的概率分別為,小王在上述三個(gè)測(cè)試點(diǎn)測(cè)試合格的概率都是.
(1)問小李選擇哪兩個(gè)測(cè)試點(diǎn)測(cè)試才能使得可以參加面試的可能性最大?請(qǐng)說明理由;
(2)假設(shè)小李選擇測(cè)試點(diǎn)進(jìn)行測(cè)試,小王選擇測(cè)試點(diǎn)進(jìn)行測(cè)試,記為兩人在各測(cè)試點(diǎn)測(cè)試合格的測(cè)試點(diǎn)個(gè)數(shù)之和,求隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=a2x+2ax-1(a>1,且a為常數(shù))在區(qū)間[-1,1]上的最大值為14.
(1)求f(x)的表達(dá)式;
(2)求滿足f(x)=7時(shí)x的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com