在長方體ABCD-A1B1C1D1中,E為AA1的中點,AB=BC=1,AA1=2.
(Ⅰ)求直線A1C與平面ABCD所成角的余弦值;
(Ⅱ)求證:A1C∥平面EBD.
考點:直線與平面平行的判定,直線與平面所成的角
專題:空間位置關系與距離
分析:(Ⅰ)連結AC,交BD于O,由已知條件得∠A1CA為直線A1C與平面ABCD所成角,由此能求出直線A1C與平面ABCD所成角的余弦值.
(Ⅱ)連結OE,在△ACA1中,E為AA1中點,O為AC中點,所以A1C∥OE,由此能證明A1C∥平面EBD.
解答: (Ⅰ)解:連結AC,交BD于O,
∵在長方體ABCD-A1B1C1D1中,AA1⊥面ABCD,
∴∠A1CA為直線A1C與平面ABCD所成角,
∵AB=BC=1,∴AC=
2

在Rt△ACA1中,AA1=2,A1C=
6

∴cosA1CA=
AC
A1C
=
3
3
,
∴直線A1C與平面ABCD所成角的余弦值為
3
3

(Ⅱ)證明:連結OE,在△ACA1中,E為AA1中點,O為AC中點,
∴A1C∥OE,
∵A1C?平面EBD,OE?平面EBD,
∴A1C∥平面EBD.
點評:本題考查直線與平面所成角的余弦值的求法,考查直線與平面平行的證明,解題時要認真審題,注意空間思維能力的培養(yǎng).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=2,an+1=
4an-2
3an-1
(n∈N*)
,設bn=
3an-2
an-1

(Ⅰ)試寫出數(shù)列{bn}的前三項;
(Ⅱ)求證:數(shù)列{bn}是等比數(shù)列,并求數(shù)列{an}的通項公式an;
(Ⅲ)設{an}的前n項和為Sn,求證:Sn
(n+2)•2n-1-1
2n-1
(n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個盒子中裝有大小完全相同且分別標有字母a,b的2個黃球和分別標有字母c,d的2個紅球.
(Ⅰ)如果每次任取1個球,取出后不放回,連續(xù)取兩次,求取出的兩個球中恰有一個是黃球的概率;
(Ⅱ)如果每次任取1個球,取出后放回,連續(xù)取兩次,求取出的兩個球中至多有一個是黃球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三角形ABC,點A(1,2),B(-1,3),C(3,-3)
(1)求三角形ABC的面積S;
(2)求邊AC上的高所在直線l的方程(化為斜截式).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知(
3x
+x22n的展開式的二項式系數(shù)和比(3x-1)n的展開式的系數(shù)和大992,
(1)求(
x
+
1
2•
4x
n展開式的有理項;
(2)求(x2-
1
x
n展開式中的系數(shù)最大的項和系數(shù)最小的項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設不等式組
x>0
y>0
y≤-nx+3n
所表示的平面區(qū)域為Dn,記Dn內的格點(格點即橫坐標和縱坐標均為整數(shù)的點)個數(shù)為f(n)(n∈N*).
(Ⅰ)求f(1),f(2)的值及f(n)的表達式;
(Ⅱ)設bn=2nf(n)
    (。┣髷(shù)列{bn}的前n項的和Sn;
    (ⅱ)請?zhí)骄渴欠翊嬖谡麛?shù)n,使
Sn-bn
Sn+1-bn+1
1
5
成立?若存在,求出所有正整數(shù)n;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1的左、右焦點分別是F1,F(xiàn)2,正三角形AF1F2的一邊AF1與雙曲線左支交于點B,且
AF1
=4
BF1
,則雙曲線C的離心率的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{
n
an
}的前n項和Sn
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長為1,P為BC的中點,Q為線段CC1上的動點,過點A,P,Q的平面截該正方體所得的截面記為S.則下列命題正確的是
 
(寫出所有正確命題的編號).
①當0<CQ<
1
2
時,S為四邊形;
②當CQ=
1
2
時,S不為等腰梯形;
③當CQ=
3
4
時,S與C1D1的交點R滿足C1R=
1
3
;
④當
3
4
<CQ<1時,S為六邊形;
⑤當CQ=1時,S的面積為
6
2

查看答案和解析>>

同步練習冊答案