將正奇數(shù)排列如圖所示的形式,其中第i行第j個數(shù)表示aij(i∈N*,j∈N*),例如a32=9,若aij=2013,則i+j=
 

             1
          3        5
    7          9       11
13       15        17       19.
考點:歸納推理
專題:推理和證明
分析:分析正奇數(shù)排列的正三角圖表知,第i行(其中i∈N*)有i個奇數(shù),且從左到右按從小到大的順序排列,則2013是第1007個奇數(shù),由等差數(shù)列的知識可得,它排在第幾行第幾個數(shù).
解答: 解:根據(jù)正奇數(shù)排列的正三角圖表知,2013是第1007個奇數(shù),應(yīng)排在i行(其中i∈N*),
則1+2+3+…+(i-1)=
i(i-1)
2
<1007①,且1+2+3+…+i=
i(i+1)
2
>1007②;
驗證i=45時,①②式成立,所以i=45;
第45行第1個奇數(shù)是2×
44×45
2
+1=1981,而1981+2(j-1)=2013,∴j=17;
所以,2013在第45行第17個數(shù),則i+j=62;
點評:本題考查了等差數(shù)列的應(yīng)用問題,解題時可以根據(jù)題目中的數(shù)量關(guān)系,合理地建立數(shù)學(xué)模型,運用所學(xué)的知識,解答出結(jié)果.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,菱形ABCD與矩形BDEF所在平面互相垂直,∠BAD=
π
3

(Ⅰ)求證:FC∥平面AED;
(Ⅱ)若BF=k•BD,當(dāng)二面角A-EF-C為直二面角時,求k的值;
(Ⅲ)在(Ⅱ)的條件下,求直線BC與平面AEF所成的角θ的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有一小型自來水廠,蓄水池中已有水450噸,水廠每小時可向蓄水池注水80噸,同時蓄水池向居民小區(qū)供水,x小時內(nèi)供水總量為80
20x
噸.現(xiàn)在開始向池中注水并同時向居民小區(qū)供水,問:
(1)多少小時后蓄水池中的水量最少?
(2)如果蓄水池中存水量少于150噸時,就會出現(xiàn)供水緊張,那么有幾個小時供水緊張?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果方程x2-(m+3)x+m+6=0的兩個實數(shù)根都在(2,4)之間,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2分別是雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的左右焦點,其右支上一點P,滿足|PF1|=3,實軸長為1,M是y軸上一點,則
PM
•(
PF1
-
PF2
)
=( 。
A、
1
2
B、
3
2
C、
5
2
D、
7
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,CB是⊙O的直徑,AP是⊙O的切線,AP與CB的延長線交于點P,A為切點.若PA=10,PB=5,則AB的長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C1,C2的極坐標(biāo)方程分別為ρ=4cos(θ+
π
6
)和ρcos(θ+
π
6
)=5.
(1)將C1,C2的方程化為直角坐標(biāo)方程;
(2)設(shè)點P在曲線C1上,點Q在C2上,求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,直線l與拋物線y2=2x相交于A,B兩點.
(1)求證:“如果直線l過點(3,0),那么
OA
OB
=3”是真命題.
(2)寫出(1)中命題的逆命題(直線l與拋物線y2=2x相交于A,B兩點為大前提),判斷它是真命題還是假命題,如果是真命題,寫出證明過程;如果是假命題,則只需要舉出一個反例說明即可.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足
x-y-1≤0
x≥1
2x+y-6≤0
,則當(dāng)x+y=3時,目標(biāo)函數(shù)z=
y
x
的取值范圍是( 。
A、[
4
7
,4]
B、[
1
2
,2]
C、[
1
2
,4]
D、[
4
7
,2]

查看答案和解析>>

同步練習(xí)冊答案