已知點A(-1,2),B(5,-6),以線段AB為直徑的圓的標準方程為______.
∵A(-1,2),B(5,-6),
∴線段AB的中點C坐標為(2,-2)
又∵|AB|=
(5+1)2+(-6-2)2
=10
∴所求圓的半徑R=
1
2
|AB|=5
因此,以線段AB為直徑的圓的標準方程為(x-2)2+(y+2)2=25.
故答案為:(x-2)2+(y+2)2=25.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

求過圓:x2+y2-2x+2y+1=0與圓:x2+y2+4x-2y-4=0的交點,圓心在直線:x-2y-5=0的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

圓心在直線3x+2y=0上,并且與x軸交于點(-2,0)和(6,0)的圓的方程為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知點A(-3,2)、B(1,-4),過A、B作兩條互相垂直的直線l1和l2,則l1和l2的交點M的軌跡方程為______(化為標準形式)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓心在第二象限,半徑為2
2
的圓C與直線y=x相切于坐標原點O,過點D(-3,0)作直線l與圓C相交于A,B兩點,且|DA|=|DB|.
(1)求圓C的方程;
(2)求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

圓C與直線y=x-2相切于點P,且圓心C在x軸的正半軸上,半徑r=
2

(1)求圓C的方程;
(2)求△POC的面積.(O為坐標原點)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,方程為x2+y2+Dx+Ey+F=0的圓M的內(nèi)接四邊形ABCD的對角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
(1)求證:F<0;
(2)若四邊形ABCD的面積為8,對角線AC的長為2,且
AB
AD
=0,求D2+E2-4F的值;
(3)設(shè)四邊形ABCD的一條邊CD的中點為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判斷點O、G、H是否共線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓C:(x-1)2+(y+2)2=9,直線l:(m+1)x-y-2m-3=0(m∈R)
(1)求證:無論m取什么實數(shù),直線恒與圓交于兩點;
(2)求直線l被圓C所截得的弦長最小時的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知圓C的半徑為,圓心在軸的正半軸上,直線與圓C相切,
則圓C的方程為(    )
A.B.
C.D.

查看答案和解析>>

同步練習冊答案