【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競(jìng)賽培訓(xùn),現(xiàn)分別從他們?cè)谂嘤?xùn)期間參加的若干次預(yù)賽成績(jī)中隨機(jī)抽取8次,記錄如下:

82

81

79

78

95

88

93

84

92

95

80

75

83

80

90

85


(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)現(xiàn)要從中選派一人參加數(shù)學(xué)競(jìng)賽,從統(tǒng)計(jì)學(xué)的角度(在平均數(shù)、方差或標(biāo)準(zhǔn)差中選兩個(gè))考慮,你認(rèn)為選派哪位學(xué)生參加合適?請(qǐng)說(shuō)明理由.

【答案】
(1)解:莖葉圖如下:


(2)解:派甲參加比較合適,理由如下:

(90﹣85)2+(92﹣85)2+(95﹣85)2]=41

= , ,

∴甲的成績(jī)較穩(wěn)定,派甲參賽比較合適


【解析】(1)將成績(jī)的十位數(shù)作為莖,個(gè)位數(shù)作為葉,可得莖葉圖;(2)計(jì)算甲與乙的平均數(shù)與方差,即可求得結(jié)論.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解莖葉圖(莖葉圖又稱“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進(jìn)行比較,將數(shù)的大小基本不變或變化不大的位作為一個(gè)主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個(gè)主干后面的幾個(gè)數(shù),每個(gè)數(shù)具體是多少),還要掌握平均數(shù)、中位數(shù)、眾數(shù)(⑴平均數(shù)、眾數(shù)和中位數(shù)都是描述一組數(shù)據(jù)集中趨勢(shì)的量;⑵平均數(shù)、眾數(shù)和中位數(shù)都有單位;⑶平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個(gè)數(shù)都有關(guān)系,所以最為重要,應(yīng)用最廣;⑷中位數(shù)不受個(gè)別偏大或偏小數(shù)據(jù)的影響;⑸眾數(shù)與各組數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個(gè)別數(shù)據(jù)的影響,有時(shí)是我們最為關(guān)心的數(shù)據(jù))的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】化簡(jiǎn)下列各式:
(1)sin23°cos7°+cos23°sin367°;
(2)(1+lg5)0+(﹣ +lg ﹣lg2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2 sinxcosx+1﹣2sin2x,x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)將函數(shù)y=f(x)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)縮短到原來(lái)的 ,把所得到的圖象再向左平移 單位,得到的函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在區(qū)間 上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2sin(x+ )cosx.
(Ⅰ)求f(x)的值域;
(Ⅱ)設(shè)△ABC的內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,已知A為銳角,f(A)= ,b=2,c=3,求cos(A﹣B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 在△中, 點(diǎn)邊上, .

(Ⅰ)求;

(Ⅱ)若△的面積是, 求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),五邊形中, .如圖(2),將沿折到的位置,得到四棱錐.點(diǎn)為線段的中點(diǎn),且平面

(1)求證:平面平面

(2)若直線所成角的正切值為,設(shè),求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,橢圓 的離心率為,直線被橢圓截得的線段長(zhǎng)為.

(Ⅰ)求橢圓的方程;

(Ⅱ)過(guò)原點(diǎn)的直線與橢圓交于 兩點(diǎn)(, 不是橢圓的頂點(diǎn)),點(diǎn)在橢圓上,且.直線軸、軸分別交于兩點(diǎn).設(shè)直線的斜率分別為,證明存在常數(shù)使得,并求出的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,其中 =(2cosx,﹣ sin2x), =(cosx,1),x∈R
(Ⅰ)求函數(shù)y=f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,f(A)=﹣1,a= ,且向量 =(3,sinB)與向量 =(2,sinC)共線,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是根據(jù)部分城市某年6月份的平均氣溫(單位:℃)數(shù)據(jù)得到的樣本頻率分布直方圖,其中平均氣溫的范圍是[20.5,26.5].已知樣本中平均氣溫不大于22.5℃的城市個(gè)數(shù)為11,則樣本中平均氣溫不低于25.5℃的城市個(gè)數(shù)為

查看答案和解析>>

同步練習(xí)冊(cè)答案