【題目】上海市松江區(qū)天馬山上的護珠塔因其傾斜度超過意大利的比薩斜塔而號稱世界第一斜塔.興趣小組同學(xué)實施如下方案來測量塔的傾斜度和塔高:如圖,記O點為塔基、P點為塔尖、點P在地面上的射影為點H.在塔身OP射影所在直線上選點A,使仰角∠HAP=45°,過O點與OA120°的地面上選B點,使仰角∠HPB=45°(點AB、O都在同一水平面上),此時測得∠OAB=27°,AB之間距離為33.6米.試求:

1)塔高(即線段PH的長,精確到0.1米);

2)塔身的傾斜度(即POPH的夾角,精確到0.1°).

【答案】1;(2

【解析】

1)根據(jù)仰角可得,在可利用來構(gòu)造關(guān)于的方程,進而得到結(jié)果;

2)在中,利用正弦定理可構(gòu)造方程求得,從而可得,進而求得結(jié)果.

1)設(shè)塔高,由題意知,

均為等腰直角三角形

中,,

即塔高約為

2)在中,

,

得:

即塔身的傾斜度約為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】P是棱長為1的正方體ABCDA1B1C1D1的底面A1B1C1D1上一點,則的取值范圍是__.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和滿足.

1)求數(shù)列的通項公式;

2)記,是數(shù)列的前項和,若對任意的,不等式都成立,求實數(shù)的取值范圍;

3)記,是否存在互不相等的正整數(shù),,,使,,成等差數(shù)列,且,成等比數(shù)列?如果存在,求出所有符合條件的;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2014年7月18日15時,超強臺風“威馬遜”登陸海南省.據(jù)統(tǒng)計,本次臺風造成全省直接經(jīng)濟損失119.52億元.適逢暑假,小明調(diào)查住在自己小區(qū)的50戶居民由于臺風造成的經(jīng)濟損失,作出如下頻率分布直方圖:

經(jīng)濟損失

4000元以下

經(jīng)濟損失

4000元以上

合計

捐款超過500元

30

捐款低于500元

6

合計

(1)臺風后區(qū)委會號召小區(qū)居民為臺風重災(zāi)區(qū)捐款,小明調(diào)查的50戶居民捐款情況如上表,在表格空白處填寫正確數(shù)字,并說明是否有以上的把握認為捐款數(shù)額是否多于或少于500元和自身經(jīng)濟損失是否到4000元有關(guān)?

(2)臺風造成了小區(qū)多戶居民門窗損壞,若小區(qū)所有居民的門窗均由李師傅和張師傅兩人進行維修,李師傅每天早上在7:00到8:00之間的任意時刻來到小區(qū),張師傅每天早上在7:30到8:30分之間的任意時刻來到小區(qū),求連續(xù)3天內(nèi),李師傅比張師傅早到小區(qū)的天數(shù)的數(shù)學(xué)期望.

附:臨界值表

參考公式: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,昆明加大了特色農(nóng)業(yè)建設(shè),其中花卉產(chǎn)業(yè)是重要組成部分.昆明斗南毗鄰滇池東岸,是著名的花都,有全國10支鮮花7支產(chǎn)自斗南之說,享有金斗南的美譽。對斗南花卉交易市場某個品種的玫瑰花日銷售情況進行調(diào)研,得到這種玫瑰花的定價(單位:元/扎,20/扎)和銷售率(銷售率是銷售量與供應(yīng)量的比值)的統(tǒng)計數(shù)據(jù)如下:

10

20

30

40

50

60

0.9

0.65

0.45

0.3

0.2

0.175

1)設(shè),根據(jù)所給參考數(shù)據(jù)判斷,回歸模型哪個更合適,并根據(jù)你的判斷結(jié)果求回歸方程(、的結(jié)果保留一位小數(shù));

2)某家花卉公司每天向斗南花卉交易市場提供該品種玫瑰花1200扎,根據(jù)(1)中的回歸方程,估計定價(單位:元/扎)為多少時,這家公司該品種玫瑰花的日銷售額(單位:元)最大,并求的最大值。

參考數(shù)據(jù):的相關(guān)系數(shù)的相關(guān)系數(shù),,,,,,,,,.

參考公式:,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),是兩條不同的直線,,,是三個不同的平面,給出下列四個命題:

①若,,則

②若,,則

③若,則

④若,,則

其中正確命題的序號是(

A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,點,點,動圓軸相切于點,過點的直線與圓相切于點,過點的直線與圓相切于點均不同于點),且交于點,設(shè)點的軌跡為曲線.

(1)證明:為定值,并求的方程;

(2)設(shè)直線的另一個交點為,直線交于兩點,當三點共線時,求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當時,求函數(shù)在區(qū)間上的值域.

(2)對于任意,都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)滿足:對于任意正數(shù),都有,且,則稱函數(shù)為“L函數(shù)”.

1)試判斷函數(shù)是否是“L函數(shù)”;

2)若函數(shù)為“L函數(shù)”,求實數(shù)a的取值范圍;

(3)若函數(shù)L函數(shù),且,求證:對任意,都有

查看答案和解析>>

同步練習(xí)冊答案