【題目】某地一天中6時(shí)至14時(shí)的溫度變化曲線(xiàn)近似滿(mǎn)足函數(shù)T=Asin(ωt+φ)+B(其中<φ<π)6時(shí)至14時(shí)期間的溫度變化曲線(xiàn)如圖所示,它是上述函數(shù)的半個(gè)周期的圖象,那么圖中曲線(xiàn)對(duì)應(yīng)的函數(shù)解析式是

【答案】y=10sin(x+)+20,x∈[6,14]
【解析】解:依題意,b==20,∵A>0,
∴30=A+b=A+20,
∴A=10;
=14﹣6=8,ω>0,
∴T==16,
∴ω= ,
∴y=f(x)=10sin(x+φ)+20,
又f(10)=20,
×10+φ=2kπ,(k∈Z),
<φ<π,
∴φ=
∴y=f(x)=10sin(x+)+20,x∈[6,14].
所以答案是:y=10sin(x+)+20,x∈[6,14].

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,為一臺(tái)冷軋機(jī)的示意圖,冷軋機(jī)由若干對(duì)軋輥組成,帶鋼從一端輸入,經(jīng)過(guò)各對(duì)軋輥逐步減薄后輸出.(軋鋼過(guò)程中,鋼帶寬度不變,且不考慮損耗)

一對(duì)對(duì)軋輥的減薄率.

(1)輸入鋼帶的厚度為,輸出鋼帶的厚度為,若每對(duì)軋輥的減薄率不超過(guò),問(wèn)冷軋機(jī)至少需要安裝幾對(duì)軋輥?

(2)已知一臺(tái)冷軋機(jī)共有4對(duì)減薄率為的軋輥,所有軋輥周長(zhǎng)均為,若第對(duì)軋輥有缺陷,每滾動(dòng)一周在剛帶上壓出一個(gè)疵點(diǎn),在冷軋機(jī)輸出的剛帶上,疵點(diǎn)的間距為,易知,為了便于檢修,請(qǐng)計(jì)算,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為等比數(shù)列的前項(xiàng)和,,若數(shù)列也是等比數(shù)列,則等于( )

A. 2n B. 3n C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(Ⅰ)證明:PB∥平面AEC;
(Ⅱ)設(shè)二面角D﹣AE﹣C為60°,AP=1,AD= ,求三棱錐E﹣ACD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,江的兩岸可近似的看成兩平行的直線(xiàn),江岸的一側(cè)有A,B兩個(gè)蔬菜基地,江的另一側(cè)點(diǎn)C處有一個(gè)超市.已知A、B、C中任意兩點(diǎn)間的距離為20千米.超市欲在AB之間建一個(gè)運(yùn)輸中轉(zhuǎn)站D,A,B兩處的蔬菜運(yùn)抵D處后,再統(tǒng)一經(jīng)過(guò)貨輪運(yùn)抵C處.由于A,B兩處蔬菜的差異,這兩處的運(yùn)輸費(fèi)用也不同.如果從A處出發(fā)的運(yùn)輸費(fèi)為每千米2元,從B處出發(fā)的運(yùn)輸費(fèi)為每千米1元,貨輪的運(yùn)輸費(fèi)為每千米3元.

(1)設(shè)∠ADC=α,試將運(yùn)輸總費(fèi)用S(單位:元)表示為α的函數(shù)S(α),并寫(xiě)出自變量的取值范圍;
(2)問(wèn)中轉(zhuǎn)站D建在何處時(shí),運(yùn)輸總費(fèi)用S最?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線(xiàn)與坐標(biāo)軸的交點(diǎn)都在圓上.

(1)求圓的方程;

(2)若圓與直線(xiàn)交于,兩點(diǎn),且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種產(chǎn)品特約經(jīng)銷(xiāo)商根據(jù)以往當(dāng)?shù)氐男枨笄闆r,得出如下該種產(chǎn)品日需求量的頻率分布直方圖.

⑴求圖中a的值,并估計(jì)日需求量的眾數(shù);

⑵某日,經(jīng)銷(xiāo)商購(gòu)進(jìn)130件該種產(chǎn)品,根據(jù)近期市場(chǎng)行情,當(dāng)天每售出1件能獲利30元,未售出的部分,每件虧損20元。設(shè)當(dāng)天需求量為件(),純利潤(rùn)為S元.

①將S表示為的函數(shù);②據(jù)頻率分布直方圖估計(jì)當(dāng)天純利潤(rùn)S不少于3400元的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;

2)如果曲線(xiàn)的某一切線(xiàn)與直線(xiàn)垂直,求切點(diǎn)坐標(biāo)與切線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校團(tuán)委組織了文明出行,愛(ài)我中華的知識(shí)競(jìng)賽,從參加考試的學(xué)生中抽出60名學(xué)生,將其成績(jī)(單位:分)整理后,得到如下頻率分布直方圖(其中分組區(qū)間為,,,.

1)求成績(jī)?cè)?/span>的頻率,并補(bǔ)全此頻率分布直方圖;

2)求這次考試平均分的估計(jì)值;

3)若從成績(jī)?cè)?/span>的學(xué)生中任選兩人,求他們的成績(jī)?cè)谕环纸M區(qū)間的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案