【題目】下列函數(shù)中,在區(qū)間(0,+∞)上為增函數(shù)的是( )
A.f(x)=|x|﹣4
B.y=
C.y=
D.

【答案】A
【解析】解:在A中,f(x)=|x|﹣4在區(qū)間(0,+∞)上為增函數(shù),故A正確;

在B中,y=﹣ 在區(qū)間(0,+∞)上為減函數(shù),故B錯(cuò)誤;

在C中, 在區(qū)間(0,+∞)上為減函數(shù),故C錯(cuò)誤;

在D中, 在區(qū)間(0,1)上是減函數(shù),在(1,+∞)上為增函數(shù),故D錯(cuò)誤.

所以答案是:A.

【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)單調(diào)性的判斷方法的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大小;③作差比較或作商比較.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下莖葉圖記錄了甲、乙兩個(gè)籃球隊(duì)在3次不同比賽中的得分情況.乙隊(duì)記錄中有一個(gè)數(shù)字模糊,無(wú)法確認(rèn),假設(shè)這個(gè)數(shù)字具有隨機(jī)性,并在圖中以m表示.那么在3次比賽中,乙隊(duì)平均得分超過(guò)甲隊(duì)平均得分的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù) ,曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為7x﹣4y﹣12=0.
(1)求y=f(x)的解析式;
(2)證明:曲線y=f(x)上任一點(diǎn)處的切線與直線x=0和直線y=x所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{bn}是等差數(shù)列,b1=1,b1+b2+…+b10=100.
(1)求數(shù)列{bn}的通項(xiàng)bn;
(2)設(shè)數(shù)列{an}的通項(xiàng)an=loga(1+ ),a>0,且a≠1,記Sn是數(shù)列{an}的前n項(xiàng)的和.試比較Sn logabn+1的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,半徑為2的半圓有一內(nèi)接梯形ABCD,它的下底AB是⊙O的直徑,上底CD的端點(diǎn)在圓周上.若雙曲線以A、B為焦點(diǎn),且過(guò)C、D兩點(diǎn),則當(dāng)梯形ABCD的周長(zhǎng)最大時(shí),雙曲線的實(shí)軸長(zhǎng)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(1)求函數(shù)f(x)的定義域;
(2)求f(1),f(﹣1),f(2),f(﹣2);
(3)判斷并證明f(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且 =﹣
(1)求角B的大。
(2)若a+c=2,SABC= ,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)拋物線x2=4y的焦點(diǎn)F作直線AB,CD與拋物線交于A,B,C,D四點(diǎn),且AB⊥CD,則 + 的最大值等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)=esinx+e﹣sinx(x∈R),則下列說(shuō)法不正確的是( )
A.f(x)為R上偶函數(shù)
B.π為f(x)的一個(gè)周期
C.π為f(x)的一個(gè)極小值點(diǎn)
D.f(x)在區(qū)間 上單調(diào)遞減

查看答案和解析>>

同步練習(xí)冊(cè)答案