【題目】調(diào)查機構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不一定正確的是( )
A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的20%
C.互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)90后比80后多
D.互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)90后比80前多
【答案】C
【解析】
利用整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖即可判斷各選項的真假.
在中,由整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖得到互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占,故正確;
在中,互聯(lián)網(wǎng)行業(yè)中90后從事技術(shù)崗位中所占比例為,互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)還包括80后,80前,所以互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的20%,是肯定的, 故正確;
在中,互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后所占比例為56%×39.6%=22.176%<41%,所以不能判斷互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多,故錯誤.
在中, 互聯(lián)網(wǎng)行業(yè)中從事運營崗位的90后人數(shù)所占比例,
故正確;
故選.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,D,E分別為BC,AC的中點,AB=BC.
求證:(1)A1B1∥平面DEC1;
(2)BE⊥C1E.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)在上單調(diào)遞減,求實數(shù)的取值范圍;
(2)是否存在實數(shù),使得在上的值域恰好是?若存在,求出實數(shù)的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), (為常數(shù)).
(1)若函數(shù)與函數(shù)在處有相同的切線,求實數(shù)的值;
(2)若,且,證明: ;
(3)若對任意,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)調(diào)查了某班全部名同學(xué)參加書法社團(tuán)和演講社團(tuán)的情況,數(shù)據(jù)如下表:(單位:人)
參加書法社團(tuán) | 未參加書法社團(tuán) | |
參加演講社團(tuán) | ||
未參加演講社團(tuán) |
(1)從該班隨機選名同學(xué),求該同學(xué)至少參加上述一個社團(tuán)的概率;
(2)在既參加書法社團(tuán)又參加演講社團(tuán)的名同學(xué)中,有5名男同學(xué)名女同學(xué)現(xiàn)從這名男同學(xué)和名女同學(xué)中各隨機選人,求被選中且未被選中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點P(x0,y0)(x0≠)在橢圓C:(a>b>0)上,若點M為橢圓C的右頂點,且PO⊥PM (O為坐標(biāo)原點),則橢圓C的離心率e的取值范圍是
A. (0,) B. (0,1) C. (,1) D. (0,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加高三模擬考試的學(xué)生中隨機抽取名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六段后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(1)求分?jǐn)?shù)在內(nèi)的頻率,補全這個頻率分布直方圖,并據(jù)此估計本次考試的平均分;
(2)用分層抽樣的方法,在分?jǐn)?shù)段為的學(xué)生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2個,求至多有1人在分?jǐn)?shù)段內(nèi)的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)動圓P(圓心為P)經(jīng)過定點(0,2)、(t+2,0)、(t-2,0)三點,當(dāng)t變化時,P的軌跡為曲線C
(1) 求C的方程
(2) 過點(0,2)且不垂直于坐標(biāo)軸的直線l與C交于A、B兩點,B點關(guān)于y軸的對稱點為D,求證:直線AD經(jīng)過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)當(dāng)時,若對任意,都有成立,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com