【題目】已知a∈R,函數(shù)f(x)=|x+ ﹣a|+a在區(qū)間[1,4]上的最大值是5,則a的取值范圍是

【答案】(﹣∞,
【解析】解:由題可知|x+ ﹣a|+a≤5,即|x+ ﹣a|≤5﹣a,所以a≤5,
又因為|x+ ﹣a|≤5﹣a,
所以a﹣5≤x+ ﹣a≤5﹣a,
所以2a﹣5≤x+ ≤5,
又因為1≤x≤4,4≤x+ ≤5,
所以2a﹣5≤4,解得a≤ ,
所以答案是:(﹣∞, ).
【考點精析】本題主要考查了函數(shù)的最值及其幾何意義和絕對值不等式的解法的相關知識點,需要掌握利用二次函數(shù)的性質(配方法)求函數(shù)的最大(。┲担焕脠D象求函數(shù)的最大(。┲;利用函數(shù)單調性的判斷函數(shù)的最大(。┲;含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關鍵是去掉絕對值的符號才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設實數(shù)滿足約束條件,的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=excosx﹣x.(13分)
(1)求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)求函數(shù)f(x)在區(qū)間[0, ]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知在直角坐標系中,直線的參數(shù)方程為,(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求直線的普通方程和曲線的直角坐標方程;

(2)設點是曲線上的一個動點,求它到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某研究型學習小組調查研究高中生使用智能手機對學習的影響,部分統(tǒng)計數(shù)據(jù)如下:

使用智能手機

不使用智能手機

合計

學習成績優(yōu)秀

學習成績不優(yōu)秀

合計

(1)根據(jù)以上統(tǒng)計數(shù)據(jù),你是否有的把握認為使用智能手機對學習有影響?

(2)為進一步了解學生對智能手機的使用習慣,現(xiàn)從全校使用智能手機的高中生中(人數(shù)很多)隨機抽取 人,求抽取的學生中學習成績優(yōu)秀的與不優(yōu)秀的都有的概率.

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且.

(1)求的值;

(2)若,求的取值范圍;

(3)若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知yf(x)是定義在R上的偶函數(shù),當x0時,f(x)=.

(1)求當x<0時,f(x)的解析式;

(2)作出函數(shù)f(x)的圖象,并指出其單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】雙曲線E: =1(a>0,b>0)的左、右焦點分別為F1、F2 , P是E坐支上一點,且|PF1|=|F1F2|,直線PF2與圓x2+y2=a2相切,則E的離心率為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】把函數(shù)y=sin(2x﹣ )的圖象向左平移 個單位后,所得函數(shù)圖象的一條對稱軸為(
A.x=0
B.x=
C.x=
D.x=﹣

查看答案和解析>>

同步練習冊答案