已知直線Ax+By+C=0,

(1)系數(shù)為什么值時,方程表示通過原點的直線;

(2)系數(shù)滿足什么關系時與坐標軸都相交;

(3)系數(shù)滿足什么條件時只與x軸相交;

(4)系數(shù)滿足什么條件時是x軸;

(5)設P(x0,y0)為直線Ax+By+C=0上一點,證明這條直線的方程可以寫成A(x-x0)+B(y-y0)=0.

解:(1)C=0.(2)A≠0且B≠0.(3)即B=0且A≠0.

(4)A=C=0,且B≠0.

(5)證明:∵P(x0,y0)在直線Ax+By+C=0上,

∴Ax0+By0+C=0,C=-Ax0-By0.

∴A(x-x0)+B(y-y0)=0.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知直線ax+by+c=0(abc≠0)與圓x2+y2=1相離,則以三條邊長分別為|a|,|b|,|c|所構成的三角形的形狀是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線Ax+By+C=0(其中A2+B2=C2,C≠0)與圓x2+y2=4交于M,N,O是坐標原點,則
OM
ON
=(  )
A、-1B、-1C、-2D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•濟南一模)已知直線ax+by+c=0與圓O:x2+y2=1相交于A,B兩點,且|AB|=
3
,則
OA
OB
的值是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線ax+by+c=0與圓O:x2+y2=4相交于A、B兩點,且|
AB
|
=2
3
,則
OA
OB
=
-2
-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線ax+by+c=0(abc≠0)與圓x2+y2=1相離,則三條邊長分別為|a|、|b|、|c|的三角形( 。

查看答案和解析>>

同步練習冊答案