已知是等差數(shù)列,設(shè)N+),
N+),問Pn與Qn哪一個(gè)大?并證明你的結(jié)論.
; ;;
當(dāng)n=1,2,3時(shí),
當(dāng) 。
解析試題分析: 2分
4分
以下比較的大小
可驗(yàn)證得:n=1,2,3時(shí), 5分
下用數(shù)學(xué)歸納法證明:當(dāng) 9分
綜上:當(dāng)n=1,2,3時(shí),
當(dāng) 10分
考點(diǎn):數(shù)學(xué)歸納法
點(diǎn)評(píng):中檔題,利用“歸納,猜想,證明”的方法,可以探求得到新的結(jié)論。利用數(shù)學(xué)歸納法及要證明,肯定結(jié)論的正確性。利用數(shù)學(xué)歸納法證明,要注意遵循“兩步一結(jié)”。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
觀察以下等式:
sin230°+cos260°+sin 30°·cos 60°=,
sin240°+cos270°+sin 40°·cos 70°=,
sin215°+cos245°+sin 15°·cos 45°=.
…
寫出反映一般規(guī)律的等式,并給予證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
先閱讀下列不等式的證法,再解決后面的問題:
已知a1,a2∈R,a1+a2=1,求證:+≥.
證明:構(gòu)造函數(shù)f(x)=(x-a1)2+(x-a2)2,f(x)對(duì)一切實(shí)數(shù)x∈R,恒有f(x)≥0,則Δ=4-8(+)≤0,∴+≥.
(1)已知a1,a2,…,an∈R,a1+a2+…+an=1,請(qǐng)寫出上述結(jié)論的推廣式;
(2)參考上述解法,對(duì)你推廣的結(jié)論加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的值都等于同一個(gè)常數(shù):
①sin213°+cos217°-sin13°cos17°;
②sin215°+cos215°-sin15°cos15°;
③sin218°+cos212°-sin18°cos12°;
④sin2(-18°)+cos248°-sin(-18°)cos48°;
⑤sin2(-25°)+cos255°-sin(-25°)cos55°.
(1)試從上述五個(gè)式子中選擇一個(gè),求出這個(gè)常數(shù);
(2)根據(jù)(1)的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為三角恒等式,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是由個(gè)實(shí)數(shù)組成的行列的數(shù)表,如果某一行(或某一列)各數(shù)之和為負(fù)數(shù),則改變?cè)撔校ɑ蛟摿校┲兴袛?shù)的符號(hào),稱為一次“操作”.
(Ⅰ) 數(shù)表如表1所示,若經(jīng)過兩次“操作”,使得到的數(shù)表每行的各數(shù)之和與每列的各數(shù)之和均為非負(fù)實(shí)數(shù),請(qǐng)寫出每次“操作”后所得的數(shù)表(寫出一種方法即可);
表1
1 | 2 | 3 | |
1 | 0 | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)f(n)=1+++ + (n∈N*).
求證:f(1)+f(2)+ +f(n-1)=n·[f(n)-1](n≥2,n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知復(fù)數(shù) ,則復(fù)數(shù)z的共軛復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在
A.第一象限 | B.第二象限 | C.第三象限 | D.第四象限 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com