【題目】設(shè),是兩個(gè)平面,是兩條直線,下列命題錯(cuò)誤的是(

A.如果,,那么.

B.如果,那么.

C.如果,,那么.

D.如果內(nèi)有兩條相交直線與平行,那么.

【答案】C

【解析】

對(duì)于A選項(xiàng),由線面垂直的性質(zhì)定理,線面平行的性質(zhì)定理和空間的直線所成的位置關(guān)系可證;對(duì)于B選項(xiàng),由面面平行的性質(zhì)定理可得;對(duì)于C選項(xiàng),相交或平行,C選項(xiàng)是錯(cuò)誤的;對(duì)于D選項(xiàng),由面面平行的判定定理可得.

,是兩個(gè)平面,,是兩條直線,得:

對(duì)于A選項(xiàng), 如果,,那么由線面垂直的性質(zhì)定理,線面平行的性質(zhì)定理和空間的直線所成的位置關(guān)系可證得,A選項(xiàng)是正確的.

對(duì)于B選項(xiàng),,由面面平行的性質(zhì)定理可證得,B選項(xiàng)是正確的.

對(duì)于C選項(xiàng),,,,則相交或平行,C選項(xiàng)是錯(cuò)誤的.

對(duì)于D選項(xiàng),內(nèi)有兩條相交直線與平行,由面面平行的判定定理可得,D選項(xiàng)是正確的.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】基于移動(dòng)網(wǎng)絡(luò)技術(shù)的共享單車被稱為“新四大發(fā)明”之一,短時(shí)間內(nèi)就風(fēng)靡全國(guó),給人們帶來(lái)新的出行體驗(yàn),某共享單車運(yùn)營(yíng)公司的市場(chǎng)研究人員為了了解公司的經(jīng)營(yíng)狀況,對(duì)公司最近6個(gè)月的市場(chǎng)占有率進(jìn)行了統(tǒng)計(jì),結(jié)果如下表:

月份

2018.11

2018.12

2019.01

2019.02

2019.03

2019.04

月份代碼

1

2

3

4

5

6

11

13

16

15

20

21

(1)請(qǐng)用相關(guān)系數(shù)說(shuō)明能否用線性回歸模型擬合與月份代碼之間的關(guān)系.如果能,請(qǐng)計(jì)算出關(guān)于的線性回歸方程,如果不能,請(qǐng)說(shuō)明理由;

(2)根據(jù)調(diào)研數(shù)據(jù),公司決定再采購(gòu)一批單車擴(kuò)大市場(chǎng),從成本1000元/輛的型車和800元/輛的型車中選購(gòu)一種,兩款單車使用壽命頻數(shù)如下表:

車型 報(bào)廢年限

1年

2年

3年

4年

總計(jì)

10

30

40

20

100

15

40

35

10

100

經(jīng)測(cè)算,平均每輛單車每年能為公司帶來(lái)500元的收入,不考慮除采購(gòu)成本以外的其它成本,假設(shè)每輛單車的使用壽命都是整數(shù)年,用頻率估計(jì)每輛車使用壽命的概率,以平均每輛單車所產(chǎn)生的利潤(rùn)的估計(jì)值為決策依據(jù),如果你是公司負(fù)責(zé)人,會(huì)選擇哪款車型?

參考數(shù)據(jù):,.

參考公式:相關(guān)系數(shù),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C:ab0)的兩個(gè)焦點(diǎn)分別為F1(-0)、F2,0.點(diǎn)M1,0)與橢圓短軸的兩個(gè)端點(diǎn)的連線相互垂直.

1)求橢圓C的方程;

2)已知點(diǎn)N的坐標(biāo)為(32),點(diǎn)P的坐標(biāo)為(mn)(m≠3.過(guò)點(diǎn)M任作直線l與橢圓C相交于AB兩點(diǎn),設(shè)直線ANNP、BN的斜率分別為k1、k2、k3,若k1k32k2,試求m,n滿足的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為數(shù)列的前項(xiàng)和,若為常數(shù))對(duì)任意恒成立.

1)若,求的值;

2)若,且.

①求數(shù)列的通項(xiàng)公式;

②若數(shù)列滿足,且,求證:數(shù)列為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,,,的中點(diǎn).

(1)證明:平面;

(2)若點(diǎn)在棱上,且二面角,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,傾斜角為的直線過(guò)點(diǎn).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)寫出直線的參數(shù)方程和曲線的直角坐標(biāo)方程;

2)若直線交于,兩點(diǎn),且,求傾斜角的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在第二屆烏鎮(zhèn)互聯(lián)網(wǎng)大會(huì)中,為了提高安保的級(jí)別同時(shí)又為了方便接待,現(xiàn)將其中的五個(gè)參會(huì)國(guó)的人員安排酒店住宿,這五個(gè)參會(huì)國(guó)要在、三家酒店選擇一家,且每家酒店至少有一個(gè)參會(huì)國(guó)入住,則這樣的安排方法共有_________(填具體數(shù)字)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,在軸負(fù)半軸上有一點(diǎn),滿足為線段的中點(diǎn),且.

1)求橢圓的離心率;

2)若過(guò)、三點(diǎn)的圓與直線相切,求橢圓的方程;

3)在(2)的條件下,過(guò)右焦點(diǎn)作斜率為的直線與橢圓交于、兩點(diǎn),在軸上是否存在點(diǎn)使得以、為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在等腰梯形ABCD中,,,EAD的中點(diǎn).現(xiàn)分別沿BE,ECABE ECD折起,使得平面ABE⊥平面BCE,平面ECD⊥平面BCE,連接AD,如圖2.

(1)若在平面BCE內(nèi)存在點(diǎn)G,使得GD∥平面ABE,請(qǐng)問點(diǎn)G的軌跡是什么圖形?并說(shuō)明理由.

(2)求平面AED與平面BCE所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案