若a,b是正常數(shù),a≠b,x,y∈(0,+∞),則
a2
x
+
b2
y
(a+b)2
x+y
,當(dāng)且僅當(dāng)
a
x
=
b
y
時(shí)取等號(hào).利用以上結(jié)論,函數(shù)f(x)=
2
x
+
9
1-2x
(x∈(0,
1
2
))取得最小值時(shí)x的值為( 。
A、1
B、
1
5
C、2
D、
1
3
分析:由“
a2
x
+
b2
y
(a+b)2
x+y
”可得f(x)=
22
2x
+
32
1-2x
(2+3)2
2x+(1-2x)
,再由取得等號(hào)的條件,求最小值.
解答:解析:由
a2
x
+
b2
y
(a+b)2
x+y

得:f(x)=
22
2x
+
32
1-2x
(2+3)2
2x+(1-2x)
=25.
當(dāng)且僅當(dāng)
2
2x
=
3
1-2x
時(shí)取等號(hào),
即當(dāng)x=
1
5
時(shí)f(x)取得最小值25.
故選B.
點(diǎn)評(píng):本題主要考查用基本不等式求函數(shù)最值問題,關(guān)鍵是基本不等式的應(yīng)用條件:一正,二定,三相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a,b是正常數(shù),a≠b,x,y∈(0,+∞),則
a2
x
+
b2
y
(a+b)2
x+y
,當(dāng)且僅當(dāng)
a
x
=
b
y
時(shí)上式取等號(hào).利用以上結(jié)論,可以得到函數(shù)f(x)=
2
x
+
9
1-2x
x∈(0,
1
2
)
)的最小值為
 
,取最小值時(shí)x的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a,b是正常數(shù),a≠b,x,y∈(0,+∞),則
a2
x
+
b2
y
(a+b)2
x+y
,當(dāng)且僅當(dāng)
a
x
=
b
y
時(shí)上式取等號(hào).利用以上結(jié)論,可以得到函數(shù)f(x)=
2
x
+
9
1-2x
x∈(0,
1
2
)
)的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•湖南模擬)選做題(請(qǐng)考生在第16題的三個(gè)小題中任選兩題作答,如果全做,則按前兩題記分,要寫出必要的推理與演算過程)
(1)如圖,已知Rt△ABC的兩條直角邊BC,AC的長(zhǎng)分別為3cm,4cm,以AC為直徑作圓與斜邊AB交于點(diǎn)D,試求BD的長(zhǎng).
(2)已知曲線C的參數(shù)方程為
x=1+cosθ
y=sinθ
(θ為參數(shù)),求曲線C上的點(diǎn)到直線x-y+1=0的距離的最大值.
(3)若a,b是正常數(shù),a≠b,x,y∈(0,+∞),則
a2
x
+
b2
y
(a+b)2
x+y
,當(dāng)且僅當(dāng)
a
x
=
b
y
時(shí)上式取等號(hào).請(qǐng)利用以上結(jié)論,求函數(shù)f(x)=
2
x
+
9
1-2x
(x∈0,
1
2
)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高考數(shù)學(xué)復(fù)習(xí):6.4 基本不等式(1)(解析版) 題型:選擇題

若a,b是正常數(shù),a≠b,x,y∈(0,+∞),則+,當(dāng)且僅當(dāng)=時(shí)取等號(hào).利用以上結(jié)論,函數(shù)f(x)=+(x∈(0,))取得最小值時(shí)x的值為( )
A.1
B.
C.2
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案