精英家教網 > 高中數學 > 題目詳情

【題目】如圖,直線AB經過☉O上的點C,并且OA=OB,CA=CB,☉O交直線OB于E,D兩點,連接EC,CD.
(1)求證:直線AB是☉O的切線;
(2)若tan∠CED= ,☉O的半徑為3,求OA的長.

【答案】
(1)證明:如圖,連接OC,

∵OA=OB,CA=CB,

∴OC⊥AB.

∴AB是☉O的切線.


(2)解:∵ED是直徑,

∴∠ECD=90°.

∴在Rt△ECD中,tan∠CED= .

∵BC是☉O的切線,

∴BC2=BD·BE,∠BCD=∠E.

又∠CBD=∠EBC,

∴△BCD∽△BEC.

.

設OA=x,則BD=OB-OD=x-3,BC=2BD=2(x-3),BE=BO+OE=x+3,

∴[2(x-3)]2=(x-3)(x+3),

解得x=5或x=3(舍去).

∴OA=5.


【解析】本題主要考查了與圓有關的比例線段,解決問題的關鍵是:(1)轉化為證明OC⊥AB即可;(2)先證明△BCD∽△BEC,再借助于對應邊成比例,解方程得OA的長

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】[選修4-5:不等式選講]

已知函數f(x)=|2x﹣1|+|x+1|,g(x)=|x﹣a|+|x+a|.

(Ⅰ)解不等式f(x)>9;

(Ⅱ)x1∈R,x2R,使得f(x1)=g(x2),求實數a的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,圓錐SO的軸截面△SAB是邊長為4的正三角形,M為母線SB的中點,過直線AM作平面β⊥面SAB,設β與圓錐側面的交線為橢圓C,則橢圓C的短半軸長為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列函數中,在其定義域內既是奇函數又是減函數的是(
A.y=x
B.y=
C.y=﹣x3
D.y=( x

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四邊形ABCD中,若 =a, =b,且|a+b|=|a- b|,則四邊形ABCD的形狀是( ).
A.平行四邊形
B.矩形
C.菱形
D.正方形

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,短軸長為2.

(1)求橢圓的標準方程;

(2)設直線與橢圓交于兩點, 為坐標原點,若,求原點到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)是定義在R上的偶函數,且當x≤0時,f(x)=x2+2x.
(1)現已畫出函數f(x)在y軸左側的圖象,如圖所示,請補出完整函數f(x)的圖象,并根據圖象寫出函數f(x)的增區(qū)間;

(2)寫出函數f(x)的解析式和值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖是網絡工作者經常用來解釋網絡運作的蛇形模型:數字1出現在第1行;數字2,3出現在第2行;數字6,5,4(從左至右)出現在第3行;數字7,8,9,10出現在第4行,依此類推,則第20行從左至右的第4個數字應是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出下列命題:
①直線l的方向向量為 =(1,﹣1,2),直線m的方向向量 =(2,1,﹣ ),則l與m垂直;
②直線l的方向向量 =(0,1,﹣1),平面α的法向量 =(1,﹣1,﹣1),則l⊥α;
③平面α、β的法向量分別為 =(0,1,3), =(1,0,2),則α∥β;
④平面α經過三點A(1,0,﹣1),B(0,1,0),C(﹣1,2,0),向量 =(1,u,t)是平面α的法向量,則u+t=1.
其中真命題的是 . (把你認為正確命題的序號都填上)

查看答案和解析>>

同步練習冊答案