【題目】在△ABC中,角A、B、C所對應的邊分別為a、b、c,且滿足 = , =3.
(Ⅰ)求△ABC的面積;
(Ⅱ)若b+c=6,求a的值.
【答案】解:(Ⅰ)因為 ,∴ ,
又由 =3,
得bccosA=3,∴bc=5,
∴
(Ⅱ)對于bc=5,又b+c=6,
∴b=5,c=1或b=1,c=5,
由余弦定理得a2=b2+c2﹣2bccosA=20,∴
【解析】(Ⅰ)利用二倍角公式利用 = 求得cosA,進而求得sinA,進而根據(jù) =3求得bc的值,進而根據(jù)三角形面積公式求得答案.(Ⅱ)根據(jù)bc和b+c的值求得b和c,進而根據(jù)余弦定理求得a的值.
【考點精析】認真審題,首先需要了解二倍角的余弦公式(二倍角的余弦公式:),還要掌握余弦定理的定義(余弦定理:;;)的相關(guān)知識才是答題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:
【題目】已知p:方程 =1表示焦點在x軸上的橢圓,q:雙曲線 =1的離心率e∈( , ).
(1)若橢圓 =1的焦點和雙曲線 =1的頂點重合,求實數(shù)m的值;
(2)若“p∧q”是真命題,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,過點E(1,0)的直線與圓O:x2+y2=4相交于A、B兩點,過點C(2,0)且與AB垂直的直線與圓O的另一交點為D.
(1)當點B坐標為(0,﹣2)時,求直線CD的方程;
(2)求四邊形ABCD面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 為f(x)的零點,x= 為y=f(x)圖象的對稱軸,且f(x)在( , )上單調(diào),則ω的最大值為( )
A.11
B.9
C.7
D.5
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列{an}的通項公式an=ncos ,其前n項和為Sn , 則S2015=( )
A.1008
B.2015
C.﹣1008
D.﹣504
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在下列結(jié)論中: ①函數(shù)y=sin(kπ﹣x)(k∈Z)為奇函數(shù);
②函數(shù) 的圖象關(guān)于點 對稱;
③函數(shù) 的圖象的一條對稱軸為 π;
④若tan(π﹣x)=2,則cos2x= .
其中正確結(jié)論的序號為(把所有正確結(jié)論的序號都填上).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)事件A表示“關(guān)于x的一元二次方程x2+ax+b2=0有實根”,其中a,b為實常數(shù). (Ⅰ)若a為區(qū)間[0,5]上的整數(shù)值隨機數(shù),b為區(qū)間[0,2]上的整數(shù)值隨機數(shù),求事件A發(fā)生的概率;
(Ⅱ)若a為區(qū)間[0,5]上的均勻隨機數(shù),b為區(qū)間[0,2]上的均勻隨機數(shù),求事件A發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若曲線C1:x2+y2﹣2x=0與曲線C2:mx2﹣xy+mx=0有三個不同的公共點,則實數(shù)m的取值范圍是( )
A.(﹣ , )
B.(﹣∞,﹣ )∪( ,+∞)
C.(﹣∞,0)∪(0,+∞)
D.(﹣ ,0)∪(0, )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知F是雙曲線 =1(a>0,b>0)的左焦點,E是該雙曲線的右頂點,過點F且垂直于x軸的直線與雙曲線交于A、B兩點,若△ABE是銳角三角形,則該雙曲線的離心率e的取值范圍為( )
A.(1,2)
B.(2,1+ )
C.( ,1)
D.(1+ ,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com