(2009•黃岡模擬)定義在R上的偶函數(shù)y=f(x)滿足:
①對x∈R都有f(x+6)=f(x)+f(3)
②f(-5)=-1;
③當x1,x2∈[0,3]且x1≠x2時,都有
f(x1)-f(x2)x1-x2
>0則
(1)f(2009)=
-1
-1
;
(2)若方程f(x)=0在區(qū)間[a,6-a]上恰有3個不同實根,實數(shù)a的取值范圍是
(-9,-3]
(-9,-3]
分析:(1)根據(jù)恒等式和偶函數(shù)的定義,以-x代x,求出函數(shù)的周期是12,又因2009=167×12+5,故f(2009)就是f(5)的值.
(2)根據(jù)當x1,x2∈[0,3]且x1≠x2時,都有
f(x1)-f(x2)
x1-x2
>0,可知函數(shù)在[0,3]上單調遞增,又f(x)為偶函數(shù),故在[-3,0]上為減函數(shù).又f(3)=0,故可求解.
解答:解:由題意,(1)因為y=f(x)是R上的偶函數(shù),所以f(x)=f(-x),因為f(x+6)=f(x)+f(3),
所以f(-x+6)=f(-x)+f(3)=f(x)+3=f(x+6),所以f(x)關于x=6對稱,
因為f(6-x)=f(6+x),所以f(-x)=f(x+12)=f(x),所以f(x)是以12為周期的函數(shù),
∴f(2009)=f(5)=f(-5)=-1;
 (2)根據(jù)當x1,x2∈[0,3]且x1≠x2時,都有
f(x1)-f(x2)
x1-x2
>0,可知函數(shù)在[0,3]上單調遞增
又f(x)為偶函數(shù),故在[-3,0]上為減函數(shù).
令x=-3,則由f(x+6)=f(x)+f(3)得f(3)=f(-3)+f(3)=2f(3),故f(3)=0
因為f(x+6)=f(x)+f(3),所以f(3)=f(-3)+f(3)=0,f(x)關于x=6對稱,所以f(9)=0,因為y=f(x)是R上的偶函數(shù),f(-9)=0,f(-3)=0,因 為f(x)在[0,3]上是增函數(shù),所以[0,3]上只有一解為3,對稱性[-3,0]只有一解為-3,因為f(x+6)=f(x)+f(3),且f(x)在[0,3]上是增函數(shù),所以f(x)在[6,9]上是增函數(shù),所以[6,9]上只有一解為9,因為f(x)關于x=6對稱,所以f(x)在[3,6]上只有一解為3,由對稱性知[-9,-6],[-6,-3]各只有一解-9,-3,
要使方程f(x)=0在區(qū)間[a,6-a]上恰有3個不同實根,則a>-9,6-a≥9
∴實數(shù)a的取值范圍是(-9,-3]
故答案為-1,(-9,-3]
點評:本題是一道抽象函數(shù)問題,題目的設計“小而巧”,解題的關鍵是巧妙的賦值,利用其奇偶性和所給的關系式得到函數(shù)的周期性,再利用周期性求函數(shù)值.靈活的“賦值法”是解決抽象函數(shù)問題的基本方法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2009•黃岡模擬)某地正處于地震帶上,預計20年后該地將發(fā)生地震.當?shù)貨Q定重新選址建設新城區(qū),同時對舊城區(qū)進行拆除.已知舊城區(qū)的住房總面積為64am2,每年拆除的數(shù)量相同;新城區(qū)計劃用十年建成,第一年建設住房面積2am2,開始幾年每年以100%的增長率建設新住房,然后從第五年開始,每年都比上一年減少2am2
(1)若10年后該地新、舊城區(qū)的住房總面積正好比目前翻一番,則每年舊城區(qū)拆除的住房面積是多少m2?
(2)設第n(1≤n≤10且n∈N)年新城區(qū)的住房總面積為Snm2,求Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•黃岡模擬)如圖是一幾何體的平面展開圖,其中ABCD為正方形,E、F分別為PA、PD的中點.在此幾何體中,給出下面四個結論:
①直線BE與直線CF異面;
②直線BE與直線AF異面;
③直線EF∥平面PBC;
④平面BCE⊥平面PAD.
其中正確的命題的個數(shù)是
2
2
個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•黃岡模擬)已知函數(shù)f(x)=
1-x2
1+x+x2
(x∈R)

(Ⅰ)求函數(shù)f(x)的單調區(qū)間和極值;
(Ⅱ)若(et+2)x2+etx+et-2≥0對滿足|x|≤1的任意實數(shù)x恒成立,求實數(shù)t的取值范圍(這里e是自然對數(shù)的底數(shù));
(Ⅲ)求證:對任意正數(shù)a、b、λ、μ,恒有f[(
λa+μb
λ+μ
)
2
]-f(
λa2b2
λ+μ
)≥(
λa+μb
λ+μ
)2
-
λa2b2
λ+μ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•黃岡模擬)四個大小相同的小球分別標有數(shù)字1、1、2、2,把它們放在一個盒子里,從中任意摸出兩個小球,它們所標有的數(shù)字分別為x,y,記ξ=x+y.
(1)求隨機變量ξ的分布列及數(shù)學期望;
(2)設“函數(shù)f(x)=x2-ξx-1在區(qū)間(2,3)上有且只有一個零點”為事件A,求事件A發(fā)生的概率.

查看答案和解析>>

同步練習冊答案