已知
a
=(2,-1,2),
b
=(-1,3,-3),
c
=(13,6,λ),若向量
a
,
b
c
共面,則λ=(  )
A、2B、3C、4D、6
考點(diǎn):共線向量與共面向量
專題:空間向量及應(yīng)用
分析:根據(jù)所給的三個(gè)向量的坐標(biāo),寫出三個(gè)向量共面的條件,點(diǎn)的關(guān)于要求的兩個(gè)方程組,解方程組即可.
解答: 解:∵
a
=(2,-1,2),
b
=(-1,3,-3),
c
=(13,6,λ),三個(gè)向量共面,
a
=x
b
+y
c

∴(2,-1,2)=x(-1,3,-3)+y(13,6,λ)
-x+13y=2
3x+6y=-1
-3x+yλ=2

解得:
x=-
5
9
y=
1
9
λ=3

故選:B.
點(diǎn)評(píng):本題考查空間向量的共線向量和共面向量,本題解題的關(guān)鍵是寫出三個(gè)向量之間的關(guān)系,轉(zhuǎn)化成解方程組的問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若正數(shù)x,y滿足
1
x
+
1
y
=1,則
1
x-1
+
4
y-1
的最小值為(  )
A、1B、4C、8D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=aln(x+1)-x2,在區(qū)間(-1,0)內(nèi)任取兩個(gè)實(shí)數(shù)p,q,且p≠q,若不等式
f(p+1)-f(q+1)
p-q
>1恒成立,則實(shí)數(shù)a的取值范圍為(  )
A、[6,+∞)
B、[4,+∞)
C、[-
1
8
,+∞)
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}的前n項(xiàng)和為Sn,已知S1,2S2,3S3成等差數(shù)列,則數(shù)列{an}的公比為( 。
A、
1
2
B、
1
3
C、
2
5
D、
4
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示的圓盤由八個(gè)全等的扇形構(gòu)成,指針繞中心旋轉(zhuǎn),可能隨機(jī)停止則指針停止在陰影部分內(nèi)的概率是( 。
A、
1
2
B、
1
4
C、
1
6
D、
3
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A、55+4
10
B、75+4
10
C、75+2
10
D、55+2
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正數(shù)a,b,c滿足abc=1,求證:(a+2)(b+2)(c+2)≥27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)不等式|x-2|+|3-x|<a(a∈N*)的解集為A,且2∈A,
3
2
∉A.
(Ⅰ)求a的值;
(Ⅱ)求函數(shù)f(x)=|x+a|+|x-2|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正實(shí)數(shù)a,b滿足2a+b=ab,則a+b的最小值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案