【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;
(2)討論函數(shù)的單調(diào)性;
(3)當(dāng)時(shí),求證:對任意,都有.
【答案】(1);(2)見解析;(3)見解析.
【解析】試題分析:(1)當(dāng)時(shí),求出導(dǎo)數(shù)易得,即,利用點(diǎn)斜式可得其切線方程;(2)求得可得,分為和兩種情形判斷其單調(diào)性;(3)當(dāng)時(shí),根據(jù)(2)可得函數(shù)在上單調(diào)遞減,故,即,化簡可得所證結(jié)論.
試題解析:(1)當(dāng)時(shí), , , , ,所以函數(shù)在點(diǎn)處的切線方程為,即.
(2),定義域?yàn)?/span>, .
① 當(dāng)時(shí), ,故函數(shù)在上單調(diào)遞減;
② 當(dāng)時(shí),令,得
x | |||
↘ | 極小值 | ↗ |
綜上所述,當(dāng)時(shí), 在上單調(diào)遞減;當(dāng)時(shí),函數(shù)在上單調(diào)遞減,在上單調(diào)遞增.
(3)當(dāng)時(shí),由(2)可知,函數(shù)在上單調(diào)遞減,顯然, ,故,所以函數(shù)在上單調(diào)遞減,對任意,都有,所以.所以,即,所以,即,所以,即,所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是奇函數(shù).
(1)求實(shí)數(shù)的值;
(2)用定義證明函數(shù)在上的單調(diào)性;
(3)若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD所在平面外一點(diǎn)P,PA⊥平面ABCD,E、F分別是AB,PC的中點(diǎn).
(1)求證:EF∥平面PAD;
(2)求證:EF⊥CD;
(3)若∠PDA=45°,求EF與平面ABCD所成的角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形O′A′B′C′的邊長為1cm,它是水平放置的一個(gè)平面圖形的直觀圖,則原圖的周長是( )
A.8cm
B.6cm
C.2(1+ )cm
D.2(1+ )cm
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列條件,分別求直線方程:
(1)經(jīng)過點(diǎn)A(3,0)且與直線2x+y﹣5=0垂直;
(2)求經(jīng)過直線x﹣y﹣1=0與2x+y﹣2=0的交點(diǎn),且平行于直線x+2y﹣3=0的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩種商品,經(jīng)銷這兩種商品所能獲得的利潤分別是p萬元和q萬元.它們與投入資金x萬元的關(guān)系是:p= x,q= .今有3萬元資金投入經(jīng)營這兩種商品,為獲得最大利潤,對這兩種商品的資金分別投入多少時(shí),能獲取最大利潤?最大利潤為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+lnx(a∈R).
(1)當(dāng)a=時(shí),求f(x)在區(qū)間[1,e]上的最大值和最小值;
(2)如果函數(shù)g(x),f1(x),f2(x),在公共定義域D上,滿足f1(x)<g(x)<f2(x),那么就稱g(x)為f1(x),f2(x)的“活動(dòng)函數(shù)”.已知函數(shù). 。若在區(qū)間(1,+∞)上,函數(shù)f(x)是f1(x),f2(x)的“活動(dòng)函數(shù)”,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|2﹣5≤2﹣x≤4},B={x|x2+2mx﹣3m2<0,m>0}.
(1)若m=2,求A∩B;
(2)若BA,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cos(ωx+φ)(ω>0),x=﹣ 是y=f(x)的零點(diǎn),直線x= 為y=f(x)圖象的一條對稱軸,且函數(shù)f(x)在區(qū)間( , )上單調(diào),則ω的最大值是( )
A.9
B.7
C.5
D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com