如圖,在等腰梯形ABCD中,AB∥CD,且AB=2CD,設(shè)∠DAB=θ,θ∈(0,
π
2
),以A,B為焦點且過點D的雙曲線的離心率為e1,以C,D為焦點且過點A的橢圓的離心率為e2,設(shè)e1=f(θ),e1e2=g(θ),則f(θ),g(θ)的大致圖象是( 。
A、
B、
C、
D、
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:用特殊值法,當θ→0時,e1→2,e1e2=1,根據(jù)圖象可得結(jié)論.
解答: 解:用特殊值法,當θ→0時,e1→2,e1e2=1,根據(jù)圖象,D符合.
故選:D.
點評:本題主要考查橢圓和雙曲線的離心率的表示,考查考生對圓錐曲線的性質(zhì)的應用,圓錐曲線是高考的重點每年必考,平時要注意基礎(chǔ)知識的積累和練習.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

為了解某校身高在1.60m~1.78m的高一學生的情況,隨機地抽查了該校100名高一學生,得到如圖所示頻率直方圖.由于不慎將部分數(shù)據(jù)丟失,但知道前4組的頻數(shù)成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設(shè)最大頻率為m,身高在1.66m~1.74m的學生數(shù)為n,則m,n的值分別為(  )
A、0.27,78
B、0.27,83
C、0.81,78
D、0.09,83

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示將若干個點擺成三角形圖案,每條邊(色括兩個端點)有n(n>l,n∈N*)個點,相應的圖案中總的點數(shù)記為an,則
9
a2a3
+
9
a3a4
+
9
a4a5
+…+
9
a2013a2014
=( 。
A、
2010
2011
B、
2011
2012
C、
2012
2013
D、
2013
2014

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋物線y2=4x,M(1,1)為其弦AB的中點,則AB方程為( 。
A、4x-2y-1=0
B、4x-2y+1=0
C、2x-y-1=0
D、2x-y+1=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,已知a3=1,a5=3,a7=9,則{an}一定( 。
A、是等差數(shù)列
B、是等比數(shù)列
C、不是等差數(shù)列
D、不是等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲乙兩人通過考試的概率分別為
3
5
1
3
,兩人同時參加考試,其中恰有一人通過的概率是(  )
A、
2
15
B、
1
5
C、
8
15
D、
3
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于方程|x2-3x+2|=m(x-
3
2
)
的實根個數(shù),以下說法正確的是( 。
A、存在實數(shù)m,使得方程無解
B、存在實數(shù)m,使得方程恰有1根
C、無論m取任何實數(shù),方程恰有2根
D、無論m取任何實數(shù),方程恰有4根

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=cosx-
1
x
(x∈R,x≠0),則f′(1)值為(  )
A、-1-sin1
B、1+sin1
C、-1+sin1
D、1-sin1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

判斷并證明函數(shù)f(x)=x+
4
x
在區(qū)間(0,2)上的單調(diào)性.

查看答案和解析>>

同步練習冊答案