如圖,長(zhǎng)方形物體E在雨中沿面P(面積為S)的垂直方向作勻速移動(dòng),速度為,雨速沿E移動(dòng)方向的分速度為。E移動(dòng)時(shí)單位時(shí)間內(nèi)的淋雨量包括兩部分:(1)P或P的平行面(只有一個(gè)面淋雨)的淋雨量,假設(shè)其值與×S成正比,比例系數(shù)為;(2)其它面的淋雨量之和,其值為,記為E移動(dòng)過程中的總淋雨量,當(dāng)移動(dòng)距離d=100,面積S=時(shí)。
(1)寫出的表達(dá)式
(2)設(shè)0<v≤10,0<c≤5,試根據(jù)c的不同取值范圍,確定移動(dòng)速度,使總淋雨量最少。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(為實(shí)常數(shù)).
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)在區(qū)間上的最小值為,求的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2014·孝感模擬)已知定義在區(qū)間[0,2]上的兩個(gè)函數(shù)f(x)和g(x),其中f(x)=-x2+2ax+1+a2,g(x)=x-+.
(1)求函數(shù)f(x)的最小值.
(2)對(duì)于?x1,x2∈[0,2],f(x1)>g(x2)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
湛江為建設(shè)國家衛(wèi)生城市,現(xiàn)計(jì)劃在相距20 km的赤坎區(qū)(記為A)霞山區(qū)(記為B)兩城區(qū)外以AB為直徑的半圓弧上選擇一點(diǎn)C建造垃圾處理廠,其對(duì)市區(qū)的影響度與所選地
點(diǎn)到市區(qū)的距離有關(guān),對(duì)赤坎區(qū)和霞山區(qū)的總影響度為兩市區(qū)的影響度之和,記C點(diǎn)到赤坎區(qū)的距離為x km,建在C處的垃圾處理廠對(duì)兩市區(qū)的總影響度為y.統(tǒng)計(jì)調(diào)查表明:垃圾處理廠對(duì)赤坎區(qū)的影響度與所選地點(diǎn)到赤坎區(qū)的距離的平方成反比,比例系數(shù)為4;對(duì)霞山區(qū)的影響度與所選地點(diǎn)到霞山區(qū)的距離的平方成反比,比例系數(shù)為k.當(dāng)垃圾處理廠建在的中點(diǎn)時(shí),對(duì)兩市區(qū)的總影響度為0.065.
(1)將y表示成x的函數(shù);
(2)討論(1)中函數(shù)的單調(diào)性,并判斷上是否存在一點(diǎn),使建在此處的垃圾處理廠對(duì)城A和城B的總影響度最?若存在,求出該點(diǎn)到赤坎區(qū)的距離;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(為實(shí)常數(shù)).
(1)若函數(shù)在區(qū)間上是增函數(shù),試用函數(shù)單調(diào)性的定義求實(shí)數(shù)的取值范圍;
(2)設(shè),若不等式在有解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),.
(1)解方程:;
(2)令,求證:
;
(3)若是實(shí)數(shù)集上的奇函數(shù),且
對(duì)任意實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
為了凈化空氣,某科研單位根據(jù)實(shí)驗(yàn)得出,在一定范圍內(nèi),每噴灑1個(gè)單位的凈化劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時(shí)間(單位:天)變化的函數(shù)關(guān)系式近似為若多次噴灑,則某一時(shí)刻空氣中的凈化劑濃度為每次投放的凈化劑在相應(yīng)時(shí)刻所釋放的濃度之和.由實(shí)驗(yàn)知,當(dāng)空氣中凈化劑的濃度不低于4(毫克/立方米)時(shí),它才能起到凈化空氣的作用.
(1)若一次噴灑4個(gè)單位的凈化劑,則凈化時(shí)間可達(dá)幾天?
(2)若第一次噴灑2個(gè)單位的凈化劑,6天后再噴灑a()個(gè)單位的藥劑,要使接下來的4天中能夠持續(xù)有效凈化,試求的最小值(精確到0.1,參考數(shù)據(jù):取1.4).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
為了保護(hù)環(huán)境,某工廠在國家的號(hào)召下,把廢棄物回收轉(zhuǎn)化為某種產(chǎn)品,經(jīng)測(cè)算,處理成本(萬元)與處理量(噸)之間的函數(shù)關(guān)系可近似的表示為:
,且每處理一噸廢棄物可得價(jià)值為萬元的某種產(chǎn)品,同時(shí)獲得國家補(bǔ)貼萬元.
(1)當(dāng)時(shí),判斷該項(xiàng)舉措能否獲利?如果能獲利,求出最大利潤(rùn);
如果不能獲利,請(qǐng)求出國家最少補(bǔ)貼多少萬元,該工廠才不會(huì)虧損?
(2)當(dāng)處理量為多少噸時(shí),每噸的平均處理成本最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
提高過江大橋的車輛通行能力可改善整個(gè)城市的交通狀況.在一般情況下,大橋上的車流速度v(km/h)是車流密度x(輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)到200輛/km時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過20輛/km時(shí),車流速度為60km/h,研究表明:當(dāng)20≤x≤200時(shí),車流速度v是車流密度x的一次函數(shù).
(1)當(dāng)0≤x≤200時(shí),求函數(shù)v(x)的表達(dá)式;
(2)當(dāng)車流密度x為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上某觀測(cè)點(diǎn)的車輛數(shù),單位:輛/小時(shí))f(x)=x·v(x)可以達(dá)到最大,并求出其最大值.(精確到1輛/小時(shí))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com