定義在R上的函數(shù)f(x)=
1
|x-2|
,x≠2
1      ,x=2
,若關(guān)于x的方程f2(x)+af(x)+b=3有3個(gè)不同實(shí)數(shù)解x1、x2、x3,且x1<x2<x3,則下列結(jié)論錯(cuò)誤的是(  )
A、x12+x22+x32=14
B、a+b=2
C、x1+x3>2x2
D、x1+x3=4
分析:令x=3得到f(3)=1代入到方程中得到a+b=2則B正確;令x=4得到f(4)=
1
2
代入方程得到a+2b=11與a+b=2聯(lián)立解得a=-7,b=9,則方程變?yōu)閒2(x)-7f(x)+9=3即f2(x)-7f(x)+6=0得到f(x)=1或f(x)=6,則有一個(gè)解為2,另一解為
13
6
,第三解為
11
6
則A,D正確;C錯(cuò)誤.
解答:解:令x=4,得:f(4)=
1
2
,代入方程得到a+2b=11;令x=3得到f(3)=1代入到方程中得到a+b=2.所以B正確;
求出a=-7,b=9,則代入到關(guān)于x的方程f2(x)+af(x)+b=3得:
f2(x)-7f(x)+6=0
解得:f(x)=1或f(x)=6
則三個(gè)解分別為
11
6
,2,
13
6
.通過計(jì)算得到A、D正確,C錯(cuò)誤.
故選C.
點(diǎn)評(píng):本題考查了函數(shù)與方程的綜合應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)既是偶函數(shù)又是周期函數(shù),若f(x)的最小正周期是π,且當(dāng)x∈[0,
π
2
]時(shí),f(x)=sinx,則f(
3
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

20、已知定義在R上的函數(shù)f(x)=-2x3+bx2+cx(b,c∈R),函數(shù)F(x)=f(x)-3x2是奇函數(shù),函數(shù)f(x)在x=-1處取極值.
(1)求f(x)的解析式;
(2)討論f(x)在區(qū)間[-3,3]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足:f(x+2)=
1-f(x)1+f(x)
,當(dāng)x∈(0,4)時(shí),f(x)=x2-1,則f(2010)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值與最小值的差為4,相鄰兩個(gè)最低點(diǎn)之間距離為π,函數(shù)y=sin(2x+
π
3
)圖象所有對(duì)稱中心都在f(x)圖象的對(duì)稱軸上.
(1)求f(x)的表達(dá)式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)的圖象是連續(xù)不斷的,且有如下對(duì)應(yīng)值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函數(shù)f(x)一定存在零點(diǎn)的區(qū)間是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案