【題目】已知橢圓(是大于的常數(shù))的左、右頂點分別為、,點是橢圓上位于軸上方的動點,直線、與直線分別交于、兩點(設(shè)直線的斜率為正數(shù)).
(Ⅰ)設(shè)直線、的斜率分別為, ,求證為定值.
(Ⅱ)求線段的長度的最小值.
(Ⅲ)判斷“”是“存在點,使得是等邊三角形”的什么條件?(直接寫出結(jié)果)
【答案】(Ⅰ)證明見解析;(Ⅱ) ;(Ⅲ)既不充分也不必要條件.
【解析】試題分析:
(Ⅰ)由題意可得直線的斜率,直線的斜率,據(jù)此計算則有為定值.
(Ⅱ)結(jié)合點的坐標(biāo)求得MN的長度表達(dá)式,結(jié)合均值不等式的結(jié)論可得線段長度的最小值為.
(Ⅲ)結(jié)合圓錐曲線的性質(zhì)可知“”是“存在點,使得是等邊三角形”的既不充分也不必要條件.
試題解析:
(Ⅰ)設(shè),則,即,
∴直線的斜率,直線的斜率,
∴,
故為定值.
(Ⅱ)直線方程為,∴點坐標(biāo),
直線方程為,∴點坐標(biāo),
∴,
∴
.
故線段長度的最小值為.
(Ⅲ)“”是“存在點,使得是等邊三角形”的既不充分也不必要條件.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng), 取一切非負(fù)實數(shù)時,若,求的范圍;
(2)若函數(shù)存在極大值,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的首項a1=3,通項an與前n項和Sn之間滿足2an=SnSn﹣1(n≥2).
(1)求證 是等差數(shù)列,并求公差;
(2)求數(shù)列{an}的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線,直線(其中)與曲線相交于、兩點.
(Ⅰ)若,試判斷曲線的形狀.
(Ⅱ)若,以線段、為鄰邊作平行四邊形,其中頂點在曲線上, 為坐標(biāo)原點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為宣傳平潭綜合試驗區(qū)的“國際旅游島”建設(shè),試驗區(qū)某旅游部門開發(fā)了一種旅游紀(jì)念產(chǎn)品,每件產(chǎn)品的成本是12元,銷售價是16元,月平均銷售件。后該旅游部門通過改進(jìn)工藝,在保證產(chǎn)品成本不變的基礎(chǔ)上,產(chǎn)品的質(zhì)量和技術(shù)含金量提高,于是準(zhǔn)備將產(chǎn)品的售價提高。經(jīng)市場分析,如果產(chǎn)品的銷售價提高的百分率為,那么月平均銷售量減少的百分率為。記改進(jìn)工藝后,旅游部門銷售該紀(jì)念品的月平均利潤是(元).
(1)寫出與的函數(shù)關(guān)系式;
(2)改進(jìn)工藝后,確定該紀(jì)念品的售價,使該旅游部門銷售該紀(jì)念品的月平均利潤最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司的廣告費支出x與銷售額y(單位:萬元)之間有下列對應(yīng)數(shù)據(jù)
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
回歸方程為 =bx+a,其中b= ,a= ﹣b .
(1)畫出散點圖,并判斷廣告費與銷售額是否具有相關(guān)關(guān)系;
(2)根據(jù)表中提供的數(shù)據(jù),求出y與x的回歸方程 =bx+a;
(3)預(yù)測銷售額為115萬元時,大約需要多少萬元廣告費.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓和拋物線有公共焦點, 的中心和的頂點都在坐標(biāo)原點,過點的直線與拋物線分別相交于兩點(其中點在第四象限內(nèi)).
(1)若,求直線的方程;
(2)若坐標(biāo)原點關(guān)于直線的對稱點在拋物線上,直線與橢圓有公共點,求橢圓的長軸長的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com