如圖1,在平面內(nèi),ABCD是AB=2,BC=
2
的矩形,△PAB是正三角形,將△PAB沿AB折起,使PC⊥BD,如圖2,E為AB的中點(diǎn),設(shè)直線(xiàn)l過(guò)點(diǎn)C且垂直于矩形ABCD所在平面,點(diǎn)F是直線(xiàn)l上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)P位于平面ABCD的同側(cè).
(1)求證:PE⊥平面ABCD;
(2)設(shè)直線(xiàn)PF與平面PAB所成的角為θ,若45°<θ≤60°,求線(xiàn)段CF長(zhǎng)的取值范圍.
精英家教網(wǎng)
分析:(1)由題意得:BD⊥PE,PE⊥AB所以PE⊥平面ABCD.所以證明線(xiàn)面垂直一般是證明已知直線(xiàn)與平面內(nèi)的兩條相交直線(xiàn)垂直即可.
(2)建立空間直角坐標(biāo)系利用向量法求出直線(xiàn)所在的向量與平面的法向量,結(jié)合向量的知識(shí)表示出向量的夾角,進(jìn)而表示出線(xiàn)面角,再求出線(xiàn)段CF長(zhǎng)的取值范圍.
解答:解:精英家教網(wǎng)(1)連接EC,∵
BE
BC
=
1
2
=
2
2
=
BC
CD
,∠EBC=∠BCD=90°,
∴△EBC∽△BCD,
∴∠ECB=∠BDC.
∴BD⊥CE.
又∵PC⊥BD,PC∩CE=C,
∴BD⊥平面PEC.
∴BD⊥PE.
在正△PAB中,
∵E是AB的中點(diǎn),
∴PE⊥AB.
又∵AB∩BD=B,
∴PE⊥平面ABCD.
(2)∵PE⊥平面ABCD,CF⊥平面ABCD,
∴PE∥CF.
∴CF∥平面PAB.
又∵CB⊥平面PAB.
∴點(diǎn)F到平面PAB的距離=點(diǎn)C到平面PAB的距離=
2

設(shè)CF=t.過(guò)F作FG⊥PE于G,則PF=
(
3
-t)
2
+3
sinθ=
2
(
3
-t)
2
+3

∵45°<θ≤60°,
2
2
<sinθ≤
3
2

2
2
2
(
3
-t)
2
+3
3
2

解得
3
-1≤t<
3
+1

所以線(xiàn)段CF長(zhǎng)的取值范圍為[
3
-1,
3
+1)
點(diǎn)評(píng):解決探索性問(wèn)題與求長(zhǎng)度問(wèn)題最好的方法就是向量法,將其轉(zhuǎn)化為向量的基本運(yùn)算,通過(guò)方程或不等式解決問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖1,在平面內(nèi),ABCD是∠BAD=60°,且AB=a的菱形,ADD′′A1和CD D′C1都是正方形.將兩個(gè)正方形分別沿AD,CD折起,使D′′與D′重合于點(diǎn)D1.設(shè)直線(xiàn)l過(guò)點(diǎn)B且垂直于菱形ABCD所在的平面,點(diǎn)E是直線(xiàn)l上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)D1位于平面ABCD同側(cè)(圖2).
(Ⅰ) 設(shè)二面角E-AC-D1的大小為θ,若
π
4
≤θ≤
π
3
,求線(xiàn)段BE長(zhǎng)的取值范圍;
(Ⅱ)在線(xiàn)段D1E上存在點(diǎn)P,使平面PA1C1∥平面EAC,求
D1P
PE
與BE之間滿(mǎn)足的關(guān)系式,并證明:當(dāng)0<BE<a時(shí),恒有
D1P
PE
<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在平面內(nèi),ABCD是∠BAD=60°且AB=a的菱形,ADD''A1和CDD'C1都是正方形.將兩個(gè)正方形分別沿AD,CD折起,使D''與D'重合于點(diǎn)D1.設(shè)直線(xiàn)l過(guò)點(diǎn)B且垂直于菱形ABCD所在的平面,點(diǎn)E是直線(xiàn)l上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)D1位于平面ABCD同側(cè),設(shè)BE=t(t>0)(圖2).
(1)設(shè)二面角E-AC-D1的大小為q,若
π
4
≤θ≤
π
3
,求t的取值范圍;
(2)在線(xiàn)段D1E上是否存在點(diǎn)P,使平面PA1C1∥平面EAC,若存在,求出P分
D1E
所成的比λ;若不存在,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省杭州市高三第二次教學(xué)質(zhì)量考試數(shù)學(xué)理卷 題型:解答題

(本題滿(mǎn)分14分)

如圖1,在平面內(nèi),ABCD是的菱形,ADD``A1和CD D`C1都是正方形.將兩個(gè)正方形分別沿AD,CD折起,使D``與D`重合于點(diǎn)D1 .設(shè)直線(xiàn)l過(guò)點(diǎn)B且垂直于菱形ABCD所在的平面,點(diǎn)E是直線(xiàn)l上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)D1位于平面ABCD同側(cè)(圖2).

  

(Ⅰ) 設(shè)二面角E – AC – D1的大小為q,若£ q £ ,求線(xiàn)段BE長(zhǎng)的取值范圍;

(Ⅱ)在線(xiàn)段上存在點(diǎn),使平面平面,求與BE之間滿(mǎn)足的關(guān)系式,并證明:當(dāng)0 < BE < a時(shí),恒有< 1.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知在銳角ΔABC中,角所對(duì)的邊分別為,且

(I )求角大小;

(II)當(dāng)時(shí),求的取值范圍.

20.如圖1,在平面內(nèi),的矩形,是正三角形,將沿折起,使如圖2,的中點(diǎn),設(shè)直線(xiàn)過(guò)點(diǎn)且垂直于矩形所在平面,點(diǎn)是直線(xiàn)上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)位于平面的同側(cè)。

(1)求證:平面

(2)設(shè)二面角的平面角為,若,求線(xiàn)段長(zhǎng)的取值范圍。

 


21.已知A,B是橢圓的左,右頂點(diǎn),,過(guò)橢圓C的右焦點(diǎn)F的直線(xiàn)交橢圓于點(diǎn)M,N,交直線(xiàn)于點(diǎn)P,且直線(xiàn)PA,PF,PB的斜率成等差數(shù)列,R和Q是橢圓上的兩動(dòng)點(diǎn),R和Q的橫坐標(biāo)之和為2,RQ的中垂線(xiàn)交X軸于T點(diǎn)

(1)求橢圓C的方程;

(2)求三角形MNT的面積的最大值

22. 已知函數(shù)

(Ⅰ)若上存在最大值與最小值,且其最大值與最小值的和為,試求的值。

(Ⅱ)若為奇函數(shù):

(1)是否存在實(shí)數(shù),使得為增函數(shù),為減函數(shù),若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由;

(2)如果當(dāng)時(shí),都有恒成立,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年浙江省杭州市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

如圖1,在平面內(nèi),ABCD是∠BAD=60°,且AB=a的菱形,ADD′′A1和CD D′C1都是正方形.將兩個(gè)正方形分別沿AD,CD折起,使D′′與D′重合于點(diǎn)D1.設(shè)直線(xiàn)l過(guò)點(diǎn)B且垂直于菱形ABCD所在的平面,點(diǎn)E是直線(xiàn)l上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)D1位于平面ABCD同側(cè)(圖2).
(Ⅰ) 設(shè)二面角E-AC-D1的大小為θ,若≤θ≤,求線(xiàn)段BE長(zhǎng)的取值范圍;
(Ⅱ)在線(xiàn)段D1E上存在點(diǎn)P,使平面PA1C1∥平面EAC,求與BE之間滿(mǎn)足的關(guān)系式,并證明:當(dāng)0<BE<a時(shí),恒有<1.

查看答案和解析>>

同步練習(xí)冊(cè)答案