給定拋物線C:y2=4x,F(xiàn)是其焦點,過F的直線l:y=k(x-1),它與C相交于A、B兩點.如果數(shù)學公式數(shù)學公式.那么k的變化范圍是


  1. A.
    [數(shù)學公式]
  2. B.
    數(shù)學公式
  3. C.
    [數(shù)學公式]∪[-數(shù)學公式,-數(shù)學公式]
  4. D.
    (-∞,-數(shù)學公式]∪[數(shù)學公式,+∞)
C
分析:根據(jù) 得關于x2和y2的方程組,進而求得x2=λ.得到B的坐標,根據(jù)焦點坐標可得直線的方程,進而求得直線在y軸上的截距,根據(jù)=,判斷上是遞減的,進而得到答案.
解答:由題設知得:(x2-1,y2)=λ(1-x1,-y1),即 (2)
由(2)得y222y12
∵y12=4x1,y22=4x2,∴x22x1(3)
聯(lián)立(1)(3)解得x2=λ.依題意有λ>0.
∴B(λ,2)或B(λ,-2),又F(1,0),
得直線l的方程為(λ-1)y=2 (x-1)或(λ-1)y=-2 (x-1)
當λ∈時,l在y軸上的截距為 或-
=,可知 上是遞減的,
,-≤-≤-
直線l在y軸上截距的變化范圍是[]∪[-,-]
故選C.
點評:本題主要考查了拋物線的應用和拋物線與直線的關系.考查了學生對圓錐曲線知識的綜合掌握.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給定拋物線C:y2=4x,F(xiàn)是C的焦點,過點F的直線l與C相交于A、B兩點,記O為坐標原點.
(1)求
OA
OB
的值;
(2)設
AF
FB
,當三角形OAB的面積S∈[2,
5
]時,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給定拋物線C:y2=4x,F(xiàn)是C的焦點,過點F的直線l與C相交于A、B兩點.
(Ⅰ)設l的斜率為1,求
OA
OB
夾角的大小;
(Ⅱ)設
FB
=λ
AF
,若λ∈[4,9],求l在y軸上截距的變化范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給定拋物線C:y2=4x,F(xiàn)是C的焦點,過點F的直線l與C相交于A、B兩點.設l的斜率為1,則
.
OA
.
OB
夾角為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給定拋物線C:y2=4x,F(xiàn)是其焦點,過F的直線l:y=k(x-1),它與C相交于A、B兩點.如果
FB
AF
λ∈[
1
16
,
1
4
]
.那么k的變化范圍是( 。
A、[
8
15
,
4
3
]
B、[-
4
3
,-
8
15
]
C、[
8
15
,
4
3
]∪[-
4
3
,-
8
15
]
D、(-∞,-
4
3
]∪[
8
15
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給定拋物線c:y2=4x,F(xiàn)是c的焦點,過點F的直線l與c相交于A,B兩點.
(1)設l的斜率為1,求
OA
OB
夾角的余弦值;
(2)設
FB
=λ
AF
,若λ∈[4,9],求l在y軸上的截距的取值范圍.

查看答案和解析>>

同步練習冊答案