已知動圓過定點A(4,0),且在y軸上截得的弦MN的長為8.
(Ⅰ) 求動圓圓心的軌跡C的方程;
(Ⅱ) 已知點B(-1,0),設不垂直于x軸的直線與軌跡C交于不同的兩點P,Q,若x軸是∠PBQ的角平分線,證明直線過定點.
(Ⅰ)設圓心C(x,y),過點C作CE⊥y 軸,垂足為E,則|ME|=
1
2
|MN|,
∴|CA|2=|CM|2=|ME|2+|EC|2
∴(x-4)2+y2=42+x2,化為y2=8x.
(II)設P(x1,y1),Q(x2,y2),
由題意可知y1+y2≠0,y1y2<0.
y21
=8x1
,
y22
=8x2

∵x軸是∠PBQ的角平分線,∴kPB=-kQB,
y1
x1+1
=-
y2
x2+1
,∴
y1
y21
8
+1
=
-y2
y22
8
+1
,化為8+y1y2=0.
直線PQ的方程為y-y1=
y2-y1
x2-x1
(x-x1)
,
y-y1=
y2-y1
y22
8
-
y21
8
(x-x1)
,化為y-y1=
8
y2+y1
(x-
y21
8
)

化為y(y2+y1)-y1(y2+y1)=8x-
y21
,
y(y1+y2)+8=8x,令y=0,則x=1,
∴直線PQ過 定點(1,0)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知動圓過定點A(4,0),且在y軸上截得的弦MN的長為8.
(1)求動圓圓心的軌跡C的方程;
(2)若軌跡C與圓M:(x-5)2+y2=r2(r>0)相交于A、B、C、D四個點,求r的取值范圍;
(3)已知點B(-1,0),設不垂直于x軸的直線l與軌跡C交于不同的兩點P,Q,若x軸是∠PBQ的角平分線,證明直線l過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•陜西)已知動圓過定點A(4,0),且在y軸上截得的弦MN的長為8.
(Ⅰ) 求動圓圓心的軌跡C的方程;
(Ⅱ) 已知點B(-1,0),設不垂直于x軸的直線與軌跡C交于不同的兩點P,Q,若x軸是∠PBQ的角平分線,證明直線過定點.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年全國普通高等學校招生統(tǒng)一考試理科數(shù)學(陜西卷解析版) 題型:解答題

已知動圓過定點A(4,0), 且在y軸上截得的弦MN的長為8.

(Ⅰ) 求動圓圓心的軌跡C的方程;

(Ⅱ) 已知點B(-1,0), 設不垂直于x軸的直線l與軌跡C交于不同的兩點P, Q, 若x軸是的角平分線, 證明直線l過定點.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013年陜西省高考數(shù)學試卷(理科)(解析版) 題型:解答題

已知動圓過定點A(4,0),且在y軸上截得的弦MN的長為8.
(Ⅰ) 求動圓圓心的軌跡C的方程;
(Ⅱ) 已知點B(-1,0),設不垂直于x軸的直線與軌跡C交于不同的兩點P,Q,若x軸是∠PBQ的角平分線,證明直線過定點.

查看答案和解析>>

同步練習冊答案