【題目】設(shè)x取實(shí)數(shù),則f(x)與g(x)表示同一個(gè)函數(shù)的是(
A.f(x)=x,g(x)=
B.f(x)= ,g(x)=
C.f(x)=1,g(x)=(x﹣1)0
D.f(x)= ,g(x)=x﹣3

【答案】B
【解析】解:A組中兩函數(shù)的定義域相同,對(duì)應(yīng)關(guān)系不同,g(x)=|x|≠x,故A中的兩函數(shù)不為同一個(gè)函數(shù);B組中兩函數(shù)的定義域均為所有正數(shù)構(gòu)成的集合,對(duì)應(yīng)關(guān)系化簡為f(x)=g(x)=1,故B中的兩函數(shù)是同一個(gè)函數(shù);
C組中兩函數(shù)的定義域不同,f(x)的定義域?yàn)镽,g(x)的定義域?yàn)閧x|x≠1},故C中的兩函數(shù)不為同一個(gè)函數(shù);
D組中兩函數(shù)的定義域不同,g(x)的定義域?yàn)镽,f(x)的定義域由不等于﹣3的實(shí)數(shù)構(gòu)成,故D中的兩函數(shù)不為同一個(gè)函數(shù).
故選B.
根據(jù)確定函數(shù)的三要素判斷每組函數(shù)是否為同一個(gè)函數(shù),即需要確定每組函數(shù)的定義域、對(duì)應(yīng)關(guān)系、值域是否相同,也可只判斷前兩項(xiàng)是否相同即可確定這兩個(gè)函數(shù)是否為同一個(gè)函數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖: 是平行四邊行, 平面, // , , , 。

(1)求證: //平面;

(2)求證:平面平面;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】盒內(nèi)有大小相同的9個(gè)球,其中2個(gè)紅色球,3個(gè)白色球,4個(gè)黑色球.規(guī)定取出1個(gè)紅色球得1分,取出1個(gè)白色球得0分,取出1個(gè)黑色球得分,現(xiàn)從盒內(nèi)任取3個(gè)球.

(Ⅰ)求取出的3個(gè)球中至少有一個(gè)紅球的概率;

(Ⅱ)求取出的3個(gè)球得分之和恰為1分的概率;

(Ⅲ)設(shè)為取出的3個(gè)球中白色球的個(gè)數(shù),求的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的方程為 =1,其左右焦點(diǎn)分別為F1 , F2 , 過其左焦點(diǎn)且斜率為1的直線與該橢圓相交與A,B兩點(diǎn),則 =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某天數(shù)學(xué)課上,你突然驚醒,發(fā)現(xiàn)黑板上有如下內(nèi)容:
例:求x3﹣3x,x∈[0,+∞)的最小值.解:利用基本不等式a+b+c≥3 ,得到x3+1+1≥3x,于是x3﹣3x=x3+1+1﹣3x﹣2≥3x﹣3x﹣2=﹣2,當(dāng)且僅當(dāng)x=1時(shí),取到最小值﹣2
(1)老師請(qǐng)你模仿例題,研究x4﹣4x,x∈[0,+∞)上的最小值;
(提示:a+b+c+d≥4
(2)研究 x3﹣3x,x∈[0,+∞)上的最小值;
(3)求出當(dāng)a>0時(shí),x3﹣ax,x∈[0,+∞)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)求證f(x)在(0,+∞)上遞增
(2)若f(x)在[m,n]上的值域是[m,n],求實(shí)數(shù)a的取值范圍
(3)當(dāng)f(x)≤2x在(0,+∞)上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,在區(qū)間(0,1)上是增函數(shù)的是(
A.y=|x|
B.y=3﹣x
C.y=
D.y=﹣x2+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】移動(dòng)公司在春節(jié)正月初八這天推出4G套餐,對(duì)這天辦理套餐的客戶進(jìn)行優(yōu)惠,優(yōu)惠方案如下:選擇套餐一的客戶可獲得優(yōu)惠200元,選擇套餐二的客戶可獲得優(yōu)惠500元,選擇套餐三的客戶可獲得優(yōu)惠300元. 初八當(dāng)天參與活動(dòng)的人數(shù)統(tǒng)計(jì)結(jié)果如圖所示,

(Ⅰ)從參加當(dāng)天活動(dòng)的人中任選一人,求此人獲得優(yōu)惠金額不低于300元的概率(將頻率視為概率);

(Ⅱ)若采用分層抽樣的方式從參加活動(dòng)的客戶中選出6人,再從該6人中隨機(jī)選兩人,求這兩人獲得相等優(yōu)惠金額的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)= 是奇函數(shù),則使f(x)>3成立的x的取值范圍為(
A.(﹣∞,﹣1)
B.(﹣1,0)
C.(0,1)
D.(1,+∞)

查看答案和解析>>

同步練習(xí)冊答案