精英家教網 > 高中數學 > 題目詳情

【題目】正四棱錐(底面為正方形,頂點在底面上的射影是底面的中心)S﹣ABCD的底面邊長為2,高為2,E為邊BC的中點,動點P在表面上運動,并且總保持PE⊥AC,則動點P的軌跡的周長為(
A.
B.
C.3
D.

【答案】D
【解析】解:連接AC,BD交于點O,連接SO,則SO⊥平面ABCD
由AC平面ABCD,故SO⊥AC
取SC中點F和CD中點G,連接GE交AC于H
則H為OC的中點,故FH∥SO,
則FH⊥AC
又由GE∥BD,BD⊥AC得GE⊥AC
∵GE∩FH=H,GE,FH平面FGE
∴AC⊥平面FGE
故當P∈平面FGE時,總有PE⊥AC,
故動點P的軌跡即為△FGE的周長
又∵正四棱錐S﹣ABCD的底面邊長為2,高為2,
故SO=2,BD=2
則GE= ,SB=
則FE=FG=
故△FGE的周長為
故選D

由動點P在正四棱錐的表面上運動,并且總保持PE⊥AC,故P點落在過E點且于AC垂直的平面上,根據線面平行的判定定理,找到滿足條件的P點軌跡,解三角形可得答案.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】我國古代數學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數是上一層燈數的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,三棱錐中,,平面平面,點分別是的中點.

(1)求證:平面;

(2)已知,求三棱錐的高.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在數列{an}中,a1=1,an+1=2an+2n
(1)設bn= ,證明:數列{bn}是等差數列.
(2)求數列{an}的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}的前n項和Sn= n,
(1)求通項公式an的表達式;
(2)令bn=an2n1 , 求數列{bn}的前n項的和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】學校藝術節(jié)對同一類的, , 四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品獲獎情況預測如下:

甲說:“作品獲得一等獎”

乙說:“作品獲得一等獎”

丙說:“, 兩項作品未獲得一等獎”

丁說:“作品獲得一等獎”.

若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工廠生產一種儀器的元件,由于受生產能力和技術水平的限制,會產生一些次品,根據經驗知道,其次品率P與日產量x(萬件)之間大體滿足關系: .(注:次品率=次品數/生產量,如P=0.1表示每生產10件產品,有1件為次品,其余為合格品).已知每生產1萬件合格的元件可以盈利2萬元,但每生產1萬件次品將虧損1萬元,故廠方希望定出合適的日產量.
(1)試將生產這種儀器的元件每天的盈利額T(萬元)表示為日產量x(萬件)的函數;
(2)當日產量x為多少時,可獲得最大利潤?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】國內某知名連鎖店分店開張營業(yè)期間,在固定的時間段內消費達到一定標準的顧客可進行一次抽獎活動,隨著抽獎活動的有效開展,參與抽獎活動的人數越來越多,該分店經理對開業(yè)前天參加抽獎活動的人數進行統(tǒng)計, 表示開業(yè)第天參加抽獎活動的人數,得到統(tǒng)計表格如下:

經過進一步統(tǒng)計分析,發(fā)現具有線性相關關系.

(1)若從這天中隨機抽取兩天,求至少有天參加抽獎人數超過的概率;

(2)請根據上表提供的數據,用最小二乘法求出關于的線性回歸方程,并估計若該活動持續(xù)天,共有多少名顧客參加抽獎.

參考公式: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將函數y=2sin(﹣2x+ )的圖象向左平移 個單位后,得到的圖象對應的解析式應該是(
A.y=﹣2sin(2x)
B.y=﹣2sin(2x+
C.y=﹣2sin(2x﹣
D.y=﹣2sin(2x+

查看答案和解析>>

同步練習冊答案