如圖所示,已知點(diǎn)C的坐標(biāo)是(2,2),過點(diǎn)C的直線CA與x軸交于點(diǎn)A,過點(diǎn)C且與直線CA垂直的

直線CB與y軸交于點(diǎn)B.設(shè)點(diǎn)M是線段AB的中點(diǎn),求點(diǎn)M的軌跡方程.

x+y-2=0


解析:

方法一(參數(shù)法):設(shè)M的坐標(biāo)為(x,y).

若直線CA與x軸垂直,則可得到M的坐標(biāo)為(1,1).

若直線CA不與x軸垂直,設(shè)直線CA的斜率為k,則直線CB的斜率為-,故直線CA方程為:y=k(x-2)+2,

令y=0得x=2-,則A點(diǎn)坐標(biāo)為.

CB的方程為:y=-(x-2)+2,令x=0,得y=2+,

則B點(diǎn)坐標(biāo)為,由中點(diǎn)坐標(biāo)公式得M點(diǎn)的坐標(biāo)為

                                           ①

消去參數(shù)k得到x+y-2=0 (x≠1),

點(diǎn)M(1,1)在直線x+y-2=0上,

綜上所述,所求軌跡方程為x+y-2=0.

方法二 (直接法)設(shè)M(x,y),依題意A點(diǎn)坐標(biāo)為(2x,0),B點(diǎn)坐標(biāo)為(0,2y).

∵|MA|=|MC|,∴化簡(jiǎn)得x+y-2=0.

方法三 (定義法)依題意|MA|=|MC|=|MO|,

即:|MC|=|MO|,所以動(dòng)點(diǎn)M是線段OC的中垂線,故由點(diǎn)斜式方程得到:x+y-2=0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知點(diǎn)A(4,0),B(4,4),C(2,6),求AC和OB的交點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知圓C:(x+1)2+y2=8,定點(diǎn)A(1,0),M為圓C上一動(dòng)點(diǎn),點(diǎn)P在線段AM上,點(diǎn)N在線段CM上,且滿足
AM
=2
AP
,
NP
AM
=0
,點(diǎn)N的軌跡為曲線E.
(1)求曲線E的方程;
(2)若過定點(diǎn)F(0,2)的直線交曲線E于不同的兩點(diǎn)G、H(點(diǎn)G在點(diǎn)F、H之間),且滿足
FG
FH
,求λ
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:044

(2007北京崇文模擬)如圖所示,已知雙曲線C的中心點(diǎn)為坐標(biāo)原點(diǎn)O,焦點(diǎn)、x軸上,點(diǎn)P在雙曲線的左支上,點(diǎn)M在右準(zhǔn)線上,且滿足,

(1)求雙曲線C的離心率e

(2)若雙曲線C過點(diǎn)Q(2,),、是雙曲線虛軸的上、下端點(diǎn),點(diǎn)A、B是雙曲線上不同的兩點(diǎn),且,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:天驕之路中學(xué)系列 讀想用 高二數(shù)學(xué)(上) 題型:044

如圖所示,已知橢圓C的方程為x2=1,點(diǎn)P(a,b)的坐標(biāo)滿足a2≤1.過點(diǎn)P的直線l與橢圓交于A、B兩點(diǎn),點(diǎn)Q為線段AB的中點(diǎn),求:

(1)點(diǎn)Q的軌跡方程;

(2)點(diǎn)Q的軌跡與坐標(biāo)軸的交點(diǎn)的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案