【題目】以下四個(gè)命題

某地市高三理科學(xué)生有15000名,在一次調(diào)研測試中,數(shù)學(xué)成績服從正態(tài)分布,已知,若按成績分層抽樣的方式取100份試卷進(jìn)行分析,則應(yīng)從120分以上(包括120分)的試卷中抽取;

已知命題,則;

上隨機(jī)取一個(gè)數(shù),能使函數(shù)上有零點(diǎn)的概率為;

設(shè),則的充要條件.

其中真命題的序號 .

【答案】②③

【解析】

試題分析:①∵,應(yīng)從120分以上(包括120分)的試卷中抽取(份),故為假命題;

由全稱命題的否定是特稱命題知,,為真命題;

有零點(diǎn),則,解得,由幾何概型的概率計(jì)算公式可得上隨機(jī)取一個(gè)數(shù),能使函數(shù)上有零點(diǎn)的概率為,故為真命題;

,,所以的充分不必要條件,故為假命題.

故填②③.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A1,∠A2,…,∠An為凸多邊形的內(nèi)角,lg sin A1+lg sin A2++lg sin An=0,則這個(gè)多邊形是(  )

A. 正六邊形 B. 梯形

C. 矩形 D. 含銳角的菱形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2cosx(sinx+cosx). (Ⅰ)求f( )的值;
(Ⅱ)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若a1 , a2 , a3 , …a20這20個(gè)數(shù)據(jù)的平均數(shù)為 ,方差為0.21,則a1 , a2 , a3 , …a20 , 這21個(gè)數(shù)據(jù)的方差為(
A.0.19
B.0.20
C.0.21
D.0.22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知常數(shù)解關(guān)于的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙二人參加普法知識競答,共有10個(gè)不同的題目,其中選擇題6個(gè),判斷題4個(gè).甲、乙二人依次各抽一題.
(1)甲抽到選擇題、乙抽到判斷題的概率是多少?
(2)甲、乙二人中至少有一人抽到選擇題的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的左頂點(diǎn)為,右焦點(diǎn)為,上頂點(diǎn)為,下頂點(diǎn)為,若直線與直線的交點(diǎn)為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)點(diǎn)為橢圓的長軸上的一個(gè)動點(diǎn),過點(diǎn)且斜率為的直線交橢圓兩點(diǎn),證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

某園藝公司種植了一批名貴樹苗,為了解樹苗的生長情況,從這批樹苗中隨機(jī)地測量了棵樹苗的高度(單位:厘米),并把這些高度列成如下的頻數(shù)分布表:

組別

頻數(shù)

2

4

11

16

13

4

(Ⅰ)在這批樹苗中任取一棵,其高度在厘米以上的概率大約是多少?這批樹苗的平均高度大約是多少?

(Ⅱ)為了進(jìn)一步獲得研究資料,標(biāo)記組中的樹苗為,組中的樹苗為,現(xiàn)從組中移出一棵樹苗,從組中移出兩棵樹苗進(jìn)行試驗(yàn)研究,則組的樹苗組的樹苗同時(shí)被移出的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B分別是橢圓的左、右端點(diǎn),F是橢圓的右焦點(diǎn),點(diǎn)P在橢圓上,且位于x軸上方,PAPF.

1點(diǎn)P的坐標(biāo);

2設(shè)M是橢圓長軸AB上的一點(diǎn),M到直線AP的距離等于MB,求橢圓上的點(diǎn)到點(diǎn)M的距離d的最小值.

查看答案和解析>>

同步練習(xí)冊答案