已知樣本7,10,14,8,7,12,11,10,8,10,13,10,8,11,8,9,12,9,13,12,那么這組數(shù)據(jù)落在8.5—11.5內(nèi)的頻率為____________.

解析:樣本總數(shù)為20個,數(shù)據(jù)落在8.5—11.5內(nèi)的樣本個數(shù)為8個,故頻率為=0.4.

答案:0.4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一汽車廠生產(chǎn)A,B,C三類轎車,每類轎車均有舒適型和標(biāo)準(zhǔn)型兩種型號,某月的產(chǎn)量如下表(單位:輛):
轎車A 轎車B 轎車C
舒適型 100 x z
標(biāo)準(zhǔn)型 300 450 600
已知在該月生產(chǎn)的轎車中隨機(jī)抽一輛,抽到舒適型轎車B的概率為0.075,按類型分層抽樣的方法在這個月生產(chǎn)的轎車中抽取50輛,其中有A類轎車10輛.
(1)求x和z的值;
(2)用分層抽樣的方法在C類轎車中抽取一個容量為5的樣本.將該樣本看成一個總體,從中任取2輛,求至少有1輛舒適型轎車的概率;
(3)用隨機(jī)抽樣的方法從B類舒適型轎車中抽取8輛,經(jīng)檢測它們的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把這8輛轎車的得分看作一個總體,從中任取一個數(shù),求該數(shù)與樣本平均數(shù)之差的絕對值不超過0.5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雅禮中學(xué)高三文科班學(xué)生的數(shù)學(xué)與地理的水平測試成績抽樣統(tǒng)計如下表
x人數(shù)y A B C
A 7 20 5
B 9 18 6
C a 4 b
若抽取學(xué)生n人,成績分為A(優(yōu)秀)、B(良好)、C(及格)三個等級,設(shè)x,y分別表示數(shù)學(xué)成績與地理成績,例如:表中數(shù)學(xué)成績?yōu)锽等級的共有20+18+4=42人,已知x與y均為B等級的概率是0.18.
(1)求抽取的學(xué)生人數(shù);
(2)設(shè)在該樣本中,數(shù)學(xué)成績優(yōu)秀率是30%,求a,b的值;
(3)在地理成績?yōu)镃等級的學(xué)生中,已知a≥10,b≥8,求數(shù)學(xué)成績?yōu)锳等級的人數(shù)比C等級的人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某中學(xué)高三文科班學(xué)生的數(shù)學(xué)與地理的水平測試成績抽樣統(tǒng)計如下表:
x
人數(shù)
y

A

B

C
A 7 20 5
B 9 18 6
C a 4 b
若抽取學(xué)生n人,成績分為A(優(yōu)秀)、B(良好)、C(及格)三個等級,設(shè)x,y分別表示數(shù)學(xué)成績與地理成績,例如:表中數(shù)學(xué)成績?yōu)锽等級的共有20+18+4=42人,已知x與y均為B等級的概率是0.18.
(1)若在該樣本中,數(shù)學(xué)成績優(yōu)秀率是30%,求a,b的值;
(2)在地理成績?yōu)镃等級的學(xué)生中,已知a≥10,b≥8,求數(shù)學(xué)成績?yōu)锳等級的人數(shù)比C等級的人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個命題:
①樣本方差反映的是所有樣本數(shù)據(jù)與樣本平均值的偏離程度;
②某只股票經(jīng)歷了10個跌停(下跌10%)后需再經(jīng)過10個漲停(上漲10%)就可以回到原來的凈值;
③某校高三一級部和二級部的人數(shù)分別是m、n,本次期末考試兩級部數(shù)學(xué)平均分分別是a、b,則這兩個級部的數(shù)學(xué)平均分為
na
m
+
mb
n
;
④某中學(xué)采用系統(tǒng)抽樣方法,從該校高一年級全體800名學(xué)生中抽50名學(xué)生做牙齒健康檢查,現(xiàn)將800名學(xué)生從l到800進(jìn)行編號.已知從497~513這16個數(shù)中取得的學(xué)生編號是503,則初始在第1小組1~16中隨機(jī)抽到的學(xué)生編號是7.
其中真命題的個數(shù)是( 。
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)為了研究學(xué)生的性別與是否支持某項活動的關(guān)系,運用2×2列聯(lián)表進(jìn)行獨立性檢驗,已知樣本的觀測值K2=7.28,臨界值如下表所示:
P(K2≥k0 0.1 0.05 0.025 0.01 0.005 0.001
k0 2.706 3.841 5.024 6.635 7.897 10.828
則有多大把握認(rèn)為“學(xué)生的性別與支持這項活動有關(guān)系”( 。
A、99.9%B、99.5%
C、99.3%D、99%

查看答案和解析>>

同步練習(xí)冊答案