已知數(shù)列{an}是一個等差數(shù)列,且a2=1,a6=-5.
(1)求{an}的通項an和前n項和Sn
(2)設(shè)cn=
5-an
2
,bn=2 cn,證明數(shù)列{bn}是等比數(shù)列.
(3)設(shè)cn=5-an,bn=
1
cn2-1
(n∈N*),求數(shù)列{bn}的前n項和Tn
考點:數(shù)列的求和,等比關(guān)系的確定
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知條件得
a1+d=1
a1+4d=-5
,求出a1=3,d=-2,由此能求出數(shù)列的通項公式和前n項和.
(2)由cn=
5-an
2
=
5-(-2n+5)
2
=n,得bn=2cn=2n.由此能證明數(shù)列{bn}是等比數(shù)列.
(3)由cn=5-an=2n,得bn=
1
(2n)2-1
=
1
2
(
1
2n-1
-
1
2n+1
)
,由此利用裂項求和法能求出數(shù)列{bn}的前n項和Tn
解答: 解:(1)設(shè){an}的公差為d,
∵a2=1,a6=-5,
a1+d=1
a1+4d=-5
,
解得a1=3,d=-2,
∴an=a1+(n-1)d=-2n+5.
Sn=na1+
n(n-1)
2
d=-n2+4n

(2)∵an=-2n+5,
cn=
5-an
2
=
5-(-2n+5)
2
=n,
∴bn=2cn=2n.…(7分)
bn+1
bn
=
2n+1
2n
=2(常數(shù)),…(9分)
∴數(shù)列{bn}是等比數(shù)列.…(10分)
(3)∵cn=5-an=2n …(11分)
∴bn=
1
(2n)2-1
=
1
(2n+1)(2n-1)
=
1
2
(
1
2n-1
-
1
2n+1
)
,…(12分)
∴Tn=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1

=
1
2
(1-
1
2n+1
)

=
n
2n+1
.…(14分)
點評:本題考查數(shù)列的前n項和的求法,考查等比數(shù)列的證明,解題時要認(rèn)真審題,注意裂項求和法的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

由①y=2x+5是一次函數(shù);②y=2x+5的圖象是一條直線;③一次函數(shù)的圖象是一條直線.寫一個“三段論”形式的正確推理,則作為大前提、小前提和結(jié)論的分別是( 。
A、②①③B、③①②
C、①②③D、②③①

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4.1:幾何證明選講
如圖所示,己知D為△ABC的BC邊上一點,⊙O1經(jīng)過點B,D,交AB于另一點E⊙O2經(jīng)過點C,D,交AC于另一點F,⊙O1與⊙O2的另一交點為G
(Ⅰ)求證:A、E、G、F四點共圓
(Ⅱ)若AG切⊙O2于G,求證:∠AEF=∠ACG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩燈塔A,B與海洋觀測站C之間的距離都等于2km,燈塔A在C北偏東45°處,燈塔B在C南偏東15°處,則A,B之間的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在Rt△ABC中,已知A(-2,0),直角頂點B(0,-2
2
),點C在x軸上.
(Ⅰ)求Rt△ABC外接圓的方程;
(Ⅱ)求過點(-4,0)且與Rt△ABC外接圓相切的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|0<3-x≤4},集合B={x|x2-x-6≤0}
(Ⅰ)求集合A,B
(Ⅱ)求(∁UA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ex
xex+1

(1)證明:0<f(x)≤1;
(2)當(dāng)x>0時,f(x)>
1
ax2+1
,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-
ax
x+1
,當(dāng)a≥0時,討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,AB=AC,點D為BC中點,點E在線段B1C1上.
(1)求證:平面ADC1⊥平面BCC1B1
(2)若A1E∥平面ADC1,求證:E為線段B1C1的中點.

查看答案和解析>>

同步練習(xí)冊答案