已知y=f(x)是定義域?yàn)?span id="bgmg6f7" class="MathJye">(
1
2
,+∞)的可導(dǎo)函數(shù),f(1)=f(3)=1,f(x)的導(dǎo)數(shù)為f′(x),且x∈(
1
2
,2)
時(shí),f′(x)<0;x∈(2,+∞)時(shí),f′(x)>0,則不等式組
-2≤x-2y≤
1
2
f(2x+y)≤1
所表示的平面區(qū)域的面積等于( 。
分析:此題關(guān)鍵是找出可行域,已知y=f(x)是定義域?yàn)?span id="rj7chmn" class="MathJye">(
1
2
,+∞)的可導(dǎo)函數(shù),f(1)=f(3)=1,f(x)的導(dǎo)數(shù)為f′(x),且x∈(
1
2
,2)
時(shí),f′(x)<0;x∈(2,+∞),說(shuō)明f(x)在x=2處取得極小值,若f(2x+y)≤1,可得1≤2x+y≤3,畫(huà)出可行域,根據(jù)線性規(guī)劃問(wèn)題進(jìn)行求解;
解答:解:∵y=f(x)是定義域?yàn)?span id="t2w3zpl" class="MathJye">(
1
2
,+∞)的可導(dǎo)函數(shù),f(1)=f(3)=1,f(x)的導(dǎo)數(shù)為f′(x),且x∈(
1
2
,2)
時(shí),f′(x)<0;x∈(2,+∞)時(shí),f′(x)>0,
說(shuō)明f(x)在(
1
2
,2)為減函數(shù),在(2,+∞)為增函數(shù),在x=2取得極小值,
因?yàn)閒(1)=f(3)=1,要使f(2x+y)≤1,可得1≤2x+y≤3①,
結(jié)合-2≤x-2y≤
1
2
②畫(huà)出滿足條件①②的可行域可得:

可知直線x-2y+2=0與2x+y=1、2x+y=3垂直,
所表示的平面區(qū)域是一個(gè)長(zhǎng)方形,邊長(zhǎng)等于點(diǎn)(0,1)到直線2x+y=3的距離:d=
|1-3|
1+4
=
2
5

另一條邊等于:
1+
1
4
=
5
2

所以面積S=
2
5
×
5
2
=1,
故選D;
點(diǎn)評(píng):此題是一道線性規(guī)劃問(wèn)題,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,找出可行域,是解決此題的關(guān)鍵,此題是一道好題!
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=x+
a
x
的定義域?yàn)椋?,+∞),且f(2)=2+
2
2
.設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過(guò)點(diǎn)P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值.
(2)問(wèn):|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請(qǐng)說(shuō)明理由.
(3)設(shè)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x+
5x
的定義域?yàn)椋?,+∞).設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過(guò)點(diǎn)P分別作直線y=2x和y軸的垂線,垂足分別為M、N.
(1)|PM|•|PN|是否為定值?若是,求出該定值;若不是,說(shuō)明理由;
(2)設(shè)點(diǎn)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+
ax
的定義域?yàn)椋?,+∞),a>0且當(dāng)x=1時(shí)取得最小值,設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過(guò)點(diǎn)P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值;
(2)問(wèn):PM•PN是否為定值?若是,則求出該定值,若不是,請(qǐng)說(shuō)明理由;
(3)設(shè)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直線y=m與兩個(gè)相鄰函數(shù)的交點(diǎn)為A,B,若m變化時(shí),AB的長(zhǎng)度是一個(gè)定值,則AB的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-ax+b存在極值點(diǎn).
(1)求a的取值范圍;
(2)過(guò)曲線y=f(x)外的點(diǎn)P(1,0)作曲線y=f(x)的切線,所作切線恰有兩條,切點(diǎn)分別為A、B.
(。┳C明:a=b;
(ⅱ)請(qǐng)問(wèn)△PAB的面積是否為定值?若是,求此定值;若不是求出面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案