精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓 的左、右頂點分別為、,上、下頂點分別為, 為坐標原點,四邊形的面積為,且該四邊形內切圓的方程為

(Ⅰ)求橢圓的方程;

(Ⅱ)若是橢圓上的兩個不同的動點,直線的斜率之積等于,試探求的面積是否為定值,并說明理由.

【答案】(Ⅰ) ;(Ⅱ).

【解析】試題分析:

(1)利用題意求得, ,則橢圓的方程為: ;

(2)分別考查斜率存在和斜率不存在兩種情況,求得的面積為定值.

試題解析:

(Ⅰ)四邊形的面積為,又可知四邊形為菱形,

,即

由題意可得直線方程為: ,即

四邊形內切圓方程為

圓心到直線的距離為,即

由①②解得: ,

橢圓的方程為:

(Ⅱ)若直線的斜率存在,設直線的方程為, , ,

得:

直線與橢圓相交于兩個不同的點,

得:

由韋達定理:

直線的斜率之積等于,

滿足③

到直線的距離為,

所以的面積

若直線的斜率不存在, 關于軸對稱

, ,則,

在橢圓上,

所以的面積

綜上可知, 的面積為定值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知f(x)= sin2x+2+2cos2x.
(1)求f(x)的最小正周期與單調遞減區(qū)間;
(2)在△ABC中,a,b,c分別是角A、B、C的對邊,若f(A)=4,b=1,△ABC的面積為 ,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在北京召開的國際數學家大會會標如圖所示,它是由4個相同的直角三角形與中間的小正方形拼成的一大正方形,若直角三角形中較小的銳角為θ,大正方形的面積是1,小正方形的面積是 ,則sin2θ﹣cos2θ的值等于(

A.1
B.﹣
C.
D.﹣

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知 =( sinx,m+cosx), =(cosx,﹣m+cosx),且f(x)=
(1)求函數f(x)的解析式;
(2)當x∈[﹣ , ]時,f(x)的最小值是﹣4,求此時函數f(x)的最大值,并求出相應的x的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某農場計劃種植某種新作物,為此對這種作物的兩個品種分別稱為品種甲和品種乙進行田間試驗選取兩大塊地,每大塊地分成小塊地,在總共小塊地中,隨機選小塊地種植品種甲,另外小塊地種植品種乙

1假設,求第一大塊地都種植品種甲的概率;

2試驗時每大塊地分成小塊,即,試驗結束后得到品種甲和品種乙在各小塊地上的每公頃產量單位:kg/hm2如下表:

分別求品種甲和品種乙的每公頃產量的樣本平均和樣本方差;根據試驗結果,你認為應該種植哪一品種?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 .

(Ⅰ)當時,令, 為常數,求函數的零點的個數;

(Ⅱ)若不等式上恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐中, 平面, , , , 為線段上一點, , 的中點.

(1)證明: 平面;

(2)求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某商場為吸引顧客消費推出一項優(yōu)惠活動.活動規(guī)則如下:消費額每滿100元可轉動如圖所示的轉盤一次,并獲得相應金額的返券,假定指針等可能地停在任一位置.若指針停在A區(qū)域返券60元;停在B區(qū)域返券30元;停在C區(qū)域不返券.例如:消費218元,可轉動轉盤2次,所獲得的返券金額是兩次金額之和.

1)若某位顧客消費128元,求返券金額不低于30元的概率;

2)若某位顧客恰好消費280元,并按規(guī)則參與了活動,他獲得返券的金額記為(元).求隨機變量的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,已知內角 ,邊 .設內角B=x,△ABC的面積為y.
(1)求函數y=f(x)的解析式和定義域;
(2)當角B為何值時,△ABC的面積最大.

查看答案和解析>>

同步練習冊答案