【題目】點(diǎn)分別是正方體的棱的中點(diǎn),如圖所示,則下列命題中的真命題是________(寫出所有真命題的編號(hào)).
①以正方體的頂點(diǎn)為頂點(diǎn)的三棱錐的四個(gè)面中最多只有三個(gè)面是直角三角形;②點(diǎn)在直線上運(yùn)動(dòng)時(shí),總有;③點(diǎn)在直線上運(yùn)動(dòng)時(shí),三棱錐的體積的定值;④若點(diǎn)是正方體的面內(nèi)的一動(dòng)點(diǎn),且到點(diǎn)和距離相等,則點(diǎn)的軌跡是一條線段.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2018河南濮陽(yáng)市高三一模】已知點(diǎn)在拋物線上, 是拋物線上異于的兩點(diǎn),以為直徑的圓過點(diǎn).
(I)證明:直線過定點(diǎn);
(II)過點(diǎn)作直線的垂線,求垂足的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程是(是參數(shù)),圓的極坐標(biāo)方程為.
(Ⅰ)求圓心的直角坐標(biāo);
(Ⅱ)由直線上的點(diǎn)向圓引切線,求切線長(zhǎng)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在幾何體中,四邊形是邊長(zhǎng)為2的菱形,平面,平面,, .
(1)當(dāng)長(zhǎng)為多少時(shí),平面平面?
(2)在(1)的條件下,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的頂點(diǎn)為平面直角坐標(biāo)系的坐標(biāo)原點(diǎn),焦點(diǎn)為圓的圓心.經(jīng)過點(diǎn)的直線交拋物線于兩點(diǎn),交圓于兩點(diǎn),在第一象限,在第四象限.
(1)求拋物線的方程;
(2)是否存在直線使是與的等差中項(xiàng)?若存在,求直線的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù).
(1)已知的解集為,求實(shí)數(shù)的值;
(2)已知,設(shè)、是關(guān)于的方程的兩根,且,求實(shí)數(shù)的值;
(3)已知滿足,且關(guān)于的方程的兩實(shí)數(shù)根分別在區(qū)間內(nèi),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,AB=2AD,為DC的中點(diǎn),將△ADM沿AM折起使平面ADM⊥平面ABCM.
(1)當(dāng)AB=2時(shí),求三棱錐的體積;
(2)求證:BM⊥AD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中中,直線,圓的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.
(1)求直線和圓的極坐標(biāo)方程;
(2)若直線與圓交于兩點(diǎn),且的面積是,求實(shí)數(shù)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com